
NHibernate Reference Documentation

Version: 5.1

Table of Contents
Preface .. viii
1. Quick-start with IIS and Microsoft SQL Server .. 1

1.1. Getting started with NHibernate .. 1
1.2. First persistent class ... 2
1.3. Mapping the cat ... 2
1.4. Playing with cats .. 3
1.5. Finally ... 6

2. Architecture .. 7
2.1. Overview ... 7
2.2. Instance states .. 9
2.3. Contextual Sessions .. 10

3. ISessionFactory Configuration .. 11
3.1. Programmatic Configuration ... 11
3.2. Obtaining an ISessionFactory .. 12
3.3. User provided ADO.NET connection .. 12
3.4. NHibernate provided ADO.NET connection .. 12
3.5. Optional configuration properties .. 15

3.5.1. SQL Dialects ... 22
3.5.2. Outer Join Fetching ... 24
3.5.3. Custom ICacheProvider ... 24
3.5.4. Query Language Substitution ... 24

3.6. Logging ... 25
3.7. Implementing an INamingStrategy .. 25
3.8. XML Configuration File ... 25

4. Persistent Classes .. 27
4.1. A simple POCO example .. 27

4.1.1. Declare properties for persistent fields .. 27
4.1.2. Implement a default constructor ... 28
4.1.3. Provide an identifier property (optional) .. 28
4.1.4. Prefer non-sealed classes and virtual methods (optional) .. 28

4.2. Implementing inheritance ... 28
4.3. Implementing Equals() and GetHashCode() ... 28
4.4. Dynamic models .. 29
4.5. Tuplizers ... 30
4.6. Lifecycle Callbacks .. 31
4.7. IValidatable callback .. 32

5. Basic O/R Mapping ... 33
5.1. Mapping declaration ... 33

5.1.1. XML Namespace .. 33
5.1.2. hibernate-mapping ... 34
5.1.3. class ... 34
5.1.4. subselect ... 36
5.1.5. id .. 37

5.1.5.1. generator .. 37
5.1.5.2. Hi/Lo Algorithm ... 38
5.1.5.3. UUID Hex Algorithm ... 39
5.1.5.4. UUID String Algorithm .. 39
5.1.5.5. GUID Algorithms ... 39

NHibernate 5.1 ii

5.1.5.6. Identity columns and Sequences .. 39
5.1.5.7. Assigned Identifiers .. 40
5.1.5.8. Enhanced identifier generators ... 40

5.1.6. composite-id ... 41
5.1.7. discriminator ... 42
5.1.8. version (optional) .. 43
5.1.9. timestamp (optional) .. 43
5.1.10. property .. 44
5.1.11. many-to-one .. 46
5.1.12. one-to-one ... 47
5.1.13. natural-id .. 49
5.1.14. component, dynamic-component .. 49
5.1.15. properties .. 50
5.1.16. subclass .. 51
5.1.17. joined-subclass .. 51
5.1.18. union-subclass ... 52
5.1.19. join ... 53
5.1.20. map, set, list, bag ... 54
5.1.21. import ... 54

5.2. NHibernate Types .. 54
5.2.1. Entities and values ... 54
5.2.2. Basic value types ... 54
5.2.3. Custom value types ... 58
5.2.4. Any type mappings .. 59

5.3. SQL quoted identifiers .. 60
5.4. Modular mapping files .. 61
5.5. Generated Properties .. 61
5.6. Auxiliary Database Objects ... 61

6. Collection Mapping ... 63
6.1. Persistent Collections ... 63
6.2. Mapping a Collection ... 64
6.3. Collections of Values and Many-To-Many Associations ... 65
6.4. One-To-Many Associations .. 67
6.5. Lazy Initialization .. 67
6.6. Sorted Collections .. 69
6.7. Using an <idbag> ... 69
6.8. Bidirectional Associations .. 70
6.9. Bidirectional associations with indexed collections ... 71
6.10. Ternary Associations .. 72
6.11. Heterogeneous Associations .. 72
6.12. Collection examples ... 73

7. Component Mapping .. 75
7.1. Dependent objects .. 75
7.2. Collections of dependent objects ... 76
7.3. Components as IDictionary indices .. 77
7.4. Components as composite identifiers ... 77
7.5. Dynamic components ... 78

8. Inheritance Mapping ... 79
8.1. The Three Strategies ... 79

8.1.1. Table per class hierarchy .. 79
8.1.2. Table per subclass ... 80
8.1.3. Table per subclass, using a discriminator ... 80

NHibernate - Relational Persistence for Idiomatic .NET

NHibernate 5.1 iii

8.1.4. Mixing table per class hierarchy with table per subclass ... 81
8.1.5. Table per concrete class ... 81
8.1.6. Table per concrete class, using implicit polymorphism ... 82
8.1.7. Mixing implicit polymorphism with other inheritance mappings 82

8.2. Limitations .. 83
9. Manipulating Persistent Data .. 85

9.1. Creating a persistent object ... 85
9.2. Loading an object ... 85
9.3. Querying ... 86

9.3.1. Scalar queries .. 87
9.3.2. The IQuery interface .. 88
9.3.3. Filtering collections ... 89
9.3.4. Criteria queries .. 89
9.3.5. Queries in native SQL .. 90

9.4. Updating objects .. 90
9.4.1. Updating in the same ISession .. 90
9.4.2. Updating detached objects .. 90
9.4.3. Reattaching detached objects .. 92

9.5. Deleting persistent objects .. 92
9.6. Flush ... 92
9.7. Checking dirtiness .. 93
9.8. Ending a Session .. 93

9.8.1. Flushing the Session .. 94
9.8.2. Committing the database transaction ... 94
9.8.3. Closing the ISession .. 94

9.9. Exception handling ... 95
9.10. Lifecycles and object graphs ... 95
9.11. Interceptors .. 96
9.12. Metadata API ... 98

10. Read-only entities .. 99
10.1. Making persistent entities read-only .. 99

10.1.1. Entities of immutable classes .. 100
10.1.2. Loading persistent entities as read-only ... 100
10.1.3. Loading read-only entities from an HQL query/criteria .. 101
10.1.4. Making a persistent entity read-only ... 102

10.2. Read-only affect on property type .. 102
10.2.1. Simple properties ... 103
10.2.2. Unidirectional associations ... 104

10.2.2.1. Unidirectional one-to-one and many-to-one .. 104
10.2.2.2. Unidirectional one-to-many and many-to-many .. 105

10.2.3. Bidirectional associations ... 105
10.2.3.1. Bidirectional one-to-one .. 105
10.2.3.2. Bidirectional one-to-many/many-to-one ... 106
10.2.3.3. Bidirectional many-to-many .. 106

11. Transactions And Concurrency ... 107
11.1. Configurations, Sessions and Factories .. 107
11.2. Threads and connections ... 107
11.3. Considering object identity ... 108
11.4. Optimistic concurrency control .. 108

11.4.1. Long session with automatic versioning .. 108
11.4.2. Many sessions with automatic versioning .. 109
11.4.3. Customizing automatic versioning .. 109

NHibernate - Relational Persistence for Idiomatic .NET

NHibernate 5.1 iv

11.4.4. Application version checking ... 110
11.5. Session disconnection ... 110
11.6. Pessimistic Locking .. 111
11.7. Connection Release Modes ... 112
11.8. Transaction scopes (System.Transactions) .. 113

12. Interceptors and events ... 114
12.1. Interceptors .. 114
12.2. Event system .. 115

13. Batch processing .. 117
13.1. Batch inserts .. 117
13.2. The StatelessSession interface ... 118
13.3. DML-style operations ... 118

14. HQL: The Hibernate Query Language .. 121
14.1. Case Sensitivity .. 121
14.2. The from clause .. 121
14.3. Associations and joins .. 121
14.4. The select clause .. 122
14.5. Aggregate functions ... 123
14.6. Polymorphic queries ... 123
14.7. The where clause .. 124
14.8. Expressions .. 125
14.9. The order by clause .. 127
14.10. The group by clause .. 128
14.11. Sub-queries .. 128
14.12. HQL examples ... 129
14.13. Tips & Tricks ... 130

15. Criteria Queries .. 132
15.1. Creating an ICriteria instance .. 132
15.2. Narrowing the result set .. 132
15.3. Ordering the results .. 133
15.4. Associations ... 133
15.5. Join entities without association (Entity joins or ad hoc joins) ... 133
15.6. Dynamic association fetching .. 134
15.7. Example queries ... 134
15.8. Projections, aggregation and grouping ... 135
15.9. Detached queries and sub-queries .. 136

16. QueryOver Queries ... 137
16.1. Structure of a Query ... 137
16.2. Simple Expressions .. 137
16.3. Additional Restrictions ... 139
16.4. Associations ... 139
16.5. Join entities without association (Entity joins or ad hoc joins) ... 140
16.6. Aliases ... 140
16.7. Projections ... 141
16.8. Projection Functions ... 142
16.9. Entities Projection .. 142
16.10. Sub-queries .. 143

17. Linq Queries ... 144
17.1. Structure of a Query ... 144
17.2. Parameter types .. 145
17.3. Supported methods and members .. 145

17.3.1. Common methods .. 145

NHibernate - Relational Persistence for Idiomatic .NET

NHibernate 5.1 v

17.3.2. DateTime and DateTimeOffset ... 146
17.3.3. ICollection, non generic and generic ... 146
17.3.4. IDictionary, non generic and generic ... 146
17.3.5. Mathematical functions .. 147
17.3.6. Nullables ... 147
17.3.7. Strings .. 147

17.4. Future results ... 148
17.5. Fetching associations .. 148
17.6. Modifying entities inside the database .. 149

17.6.1. Inserting new entities ... 149
17.6.2. Updating entities ... 150
17.6.3. Deleting entities .. 151

17.7. Query cache ... 151
17.8. Extending the Linq to NHibernate provider .. 151

17.8.1. Adding SQL functions ... 151
17.8.2. Adding a custom generator ... 152

18. Native SQL .. 155
18.1. Using an ISQLQuery .. 155

18.1.1. Scalar queries .. 155
18.1.2. Entity queries .. 155
18.1.3. Handling associations and collections ... 156
18.1.4. Returning multiple entities ... 156

18.1.4.1. Alias and property references ... 157
18.1.5. Returning non-managed entities .. 158
18.1.6. Handling inheritance .. 158
18.1.7. Parameters .. 158

18.2. Named SQL queries ... 159
18.2.1. Using return-property to explicitly specify column/alias names 160
18.2.2. Using stored procedures for querying .. 161

18.2.2.1. Rules/limitations for using stored procedures .. 161
18.3. Custom SQL for create, update and delete .. 162
18.4. Custom SQL for loading ... 163

19. Filtering data ... 164
19.1. NHibernate filters ... 164

20. Improving performance .. 166
20.1. Fetching strategies .. 166

20.1.1. Working with lazy associations .. 166
20.1.2. Tuning fetch strategies ... 167
20.1.3. Single-ended association proxies .. 168
20.1.4. Initializing collections and proxies .. 169
20.1.5. Using batch fetching .. 170
20.1.6. Using subselect fetching ... 171

20.2. The Second Level Cache ... 171
20.2.1. Cache mappings .. 172
20.2.2. Strategy: read only ... 172
20.2.3. Strategy: read/write .. 172
20.2.4. Strategy: nonstrict read/write .. 173

20.3. Managing the caches .. 173
20.4. The Query Cache ... 174
20.5. Understanding Collection performance .. 174

20.5.1. Taxonomy ... 175
20.5.2. Lists, maps, idbags and sets are the most efficient collections to update 175

NHibernate - Relational Persistence for Idiomatic .NET

NHibernate 5.1 vi

20.5.3. Bags and lists are the most efficient inverse collections .. 176
20.5.4. One shot delete .. 176

20.6. Batch updates ... 176
20.7. Multi Query ... 177
20.8. Multi Criteria ... 178

21. Toolset Guide .. 179
21.1. Schema Generation ... 179

21.1.1. Customizing the schema ... 179
21.1.2. Running the tool .. 180

22. Example: Parent/Child .. 182
22.1. A note about collections .. 182
22.2. Bidirectional one-to-many ... 182
22.3. Cascading lifecycle ... 183
22.4. Using cascading Update() ... 184
22.5. Conclusion ... 186

23. Example: Weblog Application ... 187
23.1. Persistent Classes ... 187
23.2. NHibernate Mappings ... 187
23.3. NHibernate Code .. 188

24. Example: Various Mappings ... 192
24.1. Employer/Employee ... 192
24.2. Author/Work .. 193
24.3. Customer/Order/Product ... 195

25. Best Practices .. 198
I. NHibernateContrib Documentation ... 200

Preface ...cci
26. NHibernate.Caches ... 202

26.1. How to use a cache? ... 203
26.2. Prevalence Cache Configuration .. 204
26.3. SysCache Configuration ... 204
26.4. SysCache2 Configuration .. 205

26.4.1. Table-based Dependency ... 205
26.4.2. Command-Based Dependencies .. 206
26.4.3. Aggregate Dependencies .. 207
26.4.4. Additional Settings .. 208

26.5. EnyimMemcached Configuration .. 209
26.6. RtMemoryCache Configuration ... 209
26.7. CoreMemoryCache Configuration ... 209
26.8. CoreDistributedCache Configuration ... 210

26.8.1. Memcached distributed cache factory ... 211
26.8.2. Redis distributed cache factory ... 211
26.8.3. SQL Server distributed cache factory .. 212
26.8.4. Memory distributed cache factory ... 212

27. NHibernate.Mapping.Attributes ... 214
27.1. What's new? ... 214
27.2. How to use it? .. 215
27.3. Tips ... 216
27.4. Known issues and TODOs .. 218
27.5. Developer Notes ... 218

NHibernate - Relational Persistence for Idiomatic .NET

NHibernate 5.1 vii

Preface
Working with object-oriented software and a relational database can be cumbersome and time consuming in
today's enterprise environments. NHibernate is an object/relational mapping tool for .NET environments. The
term object/relational mapping (ORM) refers to the technique of mapping a data representation from an object
model to a relational data model with a SQL-based schema.

NHibernate not only takes care of the mapping from .NET classes to database tables (and from .NET data types
to SQL data types), but also provides data query and retrieval facilities and can significantly reduce develop-
ment time otherwise spent with manual data handling in SQL and ADO.NET.

NHibernate's goal is to relieve the developer from 95 percent of common data persistence related programming
tasks. NHibernate may not be the best solution for data-centric applications that only use stored-procedures to
implement the business logic in the database, it is most useful with object-oriented domain models and business
logic in the .NET-based middle-tier. However, NHibernate can certainly help you to remove or encapsulate
vendor-specific SQL code and will help with the common task of result set translation from a tabular represent-
ation to a graph of objects.

If you are new to NHibernate and Object/Relational Mapping or even .NET Framework, please follow these
steps:

1. Read Chapter 1, Quick-start with IIS and Microsoft SQL Server for a 30 minute tutorial, using Internet In-
formation Services (IIS) web server.

2. Read Chapter 2, Architecture to understand the environments where NHibernate can be used.

3. Use this reference documentation as your primary source of information. Consider reading Hibernate in
Action [https://www.manning.com/books/hibernate-in-action] (java) or NHibernate in Action
[https://www.manning.com/books/nhibernate-in-action] or NHibernate 4.x Cookbook - Second Edition
[https://www.packtpub.com/application-development/nhibernate-40-cookbook] or NHibernate 2 Begin-
ner's Guide [https://www.packtpub.com/application-development/nhibernate-2-beginners-guide] if you
need more help with application design or if you prefer a step-by-step tutorial. Also visit ht-
tp://nhibernate.sourceforge.net/NHibernateEg/ for NHibernate tutorial with examples.

4. FAQs are answered on the NHibernate users group [https://groups.google.com/forum/#!forum/nhusers].

5. The Community Area on the NHibernate website [http://nhibernate.info/] is a good source for design pat-
terns and various integration solutions (ASP.NET, Windows Forms).

If you have questions, use the NHibernate user forum [https://groups.google.com/forum/#!forum/nhusers]. We
also provide a GitHub issue tracking system [https://github.com/nhibernate/nhibernate-core/issues] for bug re-
ports and feature requests. If you are interested in the development of NHibernate, join the developer mailing
list. If you are interested in translating this documentation into your language, contact us on the developer mail-
ing list [https://groups.google.com/forum/#!forum/nhibernate-development].

NHibernate 5.1 viii

https://www.manning.com/books/hibernate-in-action
https://www.manning.com/books/hibernate-in-action
https://www.manning.com/books/nhibernate-in-action
https://www.packtpub.com/application-development/nhibernate-40-cookbook
https://www.packtpub.com/application-development/nhibernate-2-beginners-guide
https://www.packtpub.com/application-development/nhibernate-2-beginners-guide
http://nhibernate.sourceforge.net/NHibernateEg/
http://nhibernate.sourceforge.net/NHibernateEg/
https://groups.google.com/forum/#!forum/nhusers
http://nhibernate.info/
https://groups.google.com/forum/#!forum/nhusers
https://github.com/nhibernate/nhibernate-core/issues
https://groups.google.com/forum/#!forum/nhibernate-development
https://groups.google.com/forum/#!forum/nhibernate-development

Chapter 1. Quick-start with IIS and Microsoft SQL
Server

1.1. Getting started with NHibernate

This tutorial explains a setup of NHibernate 5.0.0 within a Microsoft environment. The tools used in this tutori-
al are:

1. Microsoft Internet Information Services (IIS) - web server supporting ASP.NET.

2. Microsoft SQL Server 2012 - the database server. This tutorial uses the desktop edition (SQL Express), a
free download from Microsoft. Support for other databases is only a matter of changing the NHibernate
SQL dialect and driver configuration.

3. Microsoft Visual Studio .NET (at least 2013) - the development environment.

First, we have to create a new Web project. We use the name QuickStart. In the project, add a NuGet refer-
ence to NHibernate. Visual Studio will automatically copy the library and its dependencies to the project output
directory. If you are using a database other than SQL Server, add a reference to its driver assembly to your
project.

We now set up the database connection information for NHibernate. To do this, open the file Web.config auto-
matically generated for your project and add configuration elements according to the listing below:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<!-- Add this element -->
<configSections>
<section

name="hibernate-configuration"
type="NHibernate.Cfg.ConfigurationSectionHandler, NHibernate" />

</configSections>

<!-- Add this element -->
<hibernate-configuration xmlns="urn:nhibernate-configuration-2.2">
<session-factory>
<property name="dialect">NHibernate.Dialect.MsSql2012Dialect</property>
<property name="connection.connection_string">

Server=localhost\SQLEXPRESS;initial catalog=quickstart;Integrated Security=True
</property>

<mapping assembly="QuickStart" />
</session-factory>

</hibernate-configuration>

<!-- Leave the other sections unchanged -->
<system.web>
...

</system.web>
</configuration>

The <configSections> element contains definitions of sections that follow and handlers to use to process their
content. We declare the handler for the configuration section here. The <hibernate-configuration> section
contains the configuration itself, telling NHibernate that we will use a Microsoft SQL Server 2012 database and
connect to it through the specified connection string. The dialect is a required setting, databases differ in their
interpretation of the SQL "standard". NHibernate will take care of the differences and comes bundled with dia-

NHibernate 5.1 1

lects for several major commercial and open source databases.

An ISessionFactory is NHibernate's concept of a single datastore, multiple databases can be used by creating
multiple XML configuration files and creating multiple Configuration and ISessionFactory objects in your
application.

The last element of the <hibernate-configuration> section declares QuickStart as the name of an assembly
containing class declarations and mapping files. The mapping files contain the metadata for the mapping of the
POCO class to a database table (or multiple tables). We'll come back to mapping files soon. Let's write the
POCO class first and then declare the mapping metadata for it.

1.2. First persistent class

NHibernate works best with the Plain Old CLR Objects (POCOs, sometimes called Plain Ordinary CLR Ob-
jects) programming model for persistent classes. A POCO has its data accessible through the standard .NET
property mechanisms, shielding the internal representation from the publicly visible interface:

namespace QuickStart
{

public class Cat
{

public virtual string Id { get; set; }

public virtual string Name { get; set; }

public virtual char Sex { get; set; }

public virtual float Weight { get; set; }
}

}

NHibernate is not restricted in its usage of property types, all .NET types and primitives (like string, char and
DateTime) can be mapped, including classes from the System.Collections.Generic namespace. You can map
them as values, collections of values, or associations to other entities. The Id is a special property that repres-
ents the database identifier (primary key) of that class, it is highly recommended for entities like a Cat.
NHibernate can use identifiers only internally, without having to declare them on the class, but we would lose
some of the flexibility in our application architecture.

No special interface has to be implemented for persistent classes nor do we have to subclass from a special root
persistent class. NHibernate also doesn't use any build time processing, such as IL manipulation, it relies solely
on .NET reflection and runtime class enhancement. So, without any dependency in the POCO class on
NHibernate, we can map it to a database table.

For the above mentioned runtime class enhancement to work, NHibernate requires that all public properties of
an entity class are declared as virtual. It also requires a parameter-less constructor: if you add a constructor
having parameters, make sure to add a parameter-less constructor too.

1.3. Mapping the cat

The Cat.hbm.xml mapping file contains the metadata required for the object/relational mapping. The metadata
includes declaration of persistent classes and the mapping of properties (to columns and foreign key relation-
ships to other entities) to database tables.

Please note that the Cat.hbm.xml file should be set to an embedded resource.

Quick-start with IIS and Microsoft SQL Server

NHibernate 5.1 2

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"

namespace="QuickStart" assembly="QuickStart">

<class name="Cat" table="Cat">

<!-- A 32 hex character is our surrogate key. It's automatically
generated by NHibernate with the UUID pattern. -->

<id name="Id">
<column name="CatId" sql-type="char(32)" not-null="true"/>
<generator class="uuid.hex" />

</id>

<!-- A cat has to have a name, but it shouldn't be too long. -->
<property name="Name">

<column name="Name" length="16" not-null="true" />
</property>
<property name="Sex" />
<property name="Weight" />

</class>

</hibernate-mapping>

Every persistent class should have an identifier attribute (actually, only classes representing entities, not de-
pendent value objects, which are mapped as components of an entity). This property is used to distinguish per-
sistent objects: Two cats are equal if catA.Id.Equals(catB.Id) is true, this concept is called database identity.
NHibernate comes bundled with various identifier generators for different scenarios (including native generat-
ors for database sequences, hi/lo identifier tables, and application assigned identifiers). We use the UUID gen-
erator (only recommended for testing, as integer surrogate keys generated by the database should be preferred)
and also specify the column CatId of the table Cat for the NHibernate generated identifier value (as a primary
key of the table).

All other properties of Cat are mapped to the same table. In the case of the Name property, we mapped it with an
explicit database column declaration. This is especially useful when the database schema is automatically gen-
erated (as SQL DDL statements) from the mapping declaration with NHibernate's SchemaExport tool. All other
properties are mapped using NHibernate's default settings, which is what you need most of the time. Here the
specification of the table name with the attribute table is redundant, it default to the class name when not spe-
cified. The table Cat in the database looks like this:

Column | Type | Modifiers
--------+--------------+----------------------
CatId | char(32) | not null, primary key
Name | nvarchar(16) | not null
Sex | nchar(1) |
Weight | real |

You should now create the database and this table manually, and later read Chapter 21, Toolset Guide if you
want to automate this step with the SchemaExport tool. This tool can create a full SQL DDL, including table
definition, custom column type constraints, unique constraints and indexes. If you are using SQL Server, you
should also make sure the ASPNET user has permissions to use the database.

1.4. Playing with cats

We're now ready to start NHibernate's ISession. It is the persistence manager interface, we use it to store and
retrieve Cats to and from the database. But first, we've to get an ISession (NHibernate's unit-of-work) from the
ISessionFactory:

ISessionFactory sessionFactory =
new Configuration().Configure().BuildSessionFactory();

Quick-start with IIS and Microsoft SQL Server

NHibernate 5.1 3

An ISessionFactory is responsible for one database and may only use one XML configuration file
(Web.config or hibernate.cfg.xml). You can set other properties (and even change the mapping metadata) by
accessing the Configuration before you build the ISessionFactory (it is immutable). Where do we create the
ISessionFactory and how can we access it in our application?

An ISessionFactory is usually only built once, e.g. at start-up inside Application_Start event handler. This
also means you should not keep it in an instance variable in your ASP.NET pages or MVC controllers, but in
some other location. Furthermore, we need some kind of Singleton, so we can access the ISessionFactory eas-
ily in application code. The approach shown next solves both problems: configuration and easy access to a
ISessionFactory.

We implement a NHibernateHelper helper class:

using System;
using System.Web;
using NHibernate;
using NHibernate.Cfg;

namespace QuickStart
{

public sealed class NHibernateHelper
{

private const string CurrentSessionKey = "nhibernate.current_session";
private static readonly ISessionFactory _sessionFactory;

static NHibernateHelper()
{

_sessionFactory = new Configuration().Configure().BuildSessionFactory();
}

public static ISession GetCurrentSession()
{

var context = HttpContext.Current;
var currentSession = context.Items[CurrentSessionKey] as ISession;

if (currentSession == null)
{

currentSession = _sessionFactory.OpenSession();
context.Items[CurrentSessionKey] = currentSession;

}

return currentSession;
}

public static void CloseSession()
{

var context = HttpContext.Current;
var currentSession = context.Items[CurrentSessionKey] as ISession;

if (currentSession == null)
{

// No current session
return;

}

currentSession.Close();
context.Items.Remove(CurrentSessionKey);

}

public static void CloseSessionFactory()
{

if (_sessionFactory != null)
{

_sessionFactory.Close();
}

}
}

Quick-start with IIS and Microsoft SQL Server

NHibernate 5.1 4

}

This class does not only take care of the ISessionFactory with its static attribute, but also has code to remem-
ber the ISession for the current HTTP request.

An ISessionFactory is threadsafe, many threads can access it concurrently and request ISessions. An ISes-

sion is a non-threadsafe object that represents a single unit-of-work with the database. ISessions are opened
by an ISessionFactory and are closed when all work is completed:

ISession session = NHibernateHelper.GetCurrentSession();
try
{

using (ITransaction tx = session.BeginTransaction())
{

var princess = new Cat
{

Name = "Princess",
Sex = 'F',
Weight = 7.4f

};

session.Save(princess);
tx.Commit();

}
}
finally
{

NHibernateHelper.CloseSession();
}

In an ISession, every database operation occurs inside a transaction that isolates the database operations (even
read-only operations). We use NHibernate's ITransaction API to abstract from the underlying transaction
strategy (in our case, ADO.NET transactions). Please note that the example above does not handle any excep-
tions.

Also note that you may call NHibernateHelper.GetCurrentSession(); as many times as you like, you will al-
ways get the current ISession of this HTTP request. You have to make sure the ISession is closed after your
unit-of-work completes, either in Application_EndRequest event handler in your application class, or with a
MVC action filter, or in a HttpModule before the HTTP response is sent. The nice side effect of the latter is
easy lazy initialization: the ISession is still open when the view is rendered, so NHibernate can load uninitial-
ized objects while you navigate the graph.

NHibernate has various methods that can be used to retrieve objects from the database. Nowadays the most
standard way is using Linq:

using(var tx = session.BeginTransaction())
{

var females = session
.Query<Cat>()
.Where(c => c.Sex == 'F')
.ToList();

foreach (var cat in females)
{

Console.Out.WriteLine("Female Cat: " + cat.Name);
}

tx.Commit();
}

If you use an older NHibernate, you may have to import the NHibernate.Linq namespace.

Quick-start with IIS and Microsoft SQL Server

NHibernate 5.1 5

NHibernate also offers an object-oriented query by criteria API that can be used to formulate type-safe queries,
the Hibernate Query Language (HQL), which is an easy to learn and powerful object-oriented extension to
SQL, as well as a strongly-typed LINQ API which translates internally to HQL. NHibernate of course uses Db-
Commands and parameter binding for all SQL communication with the database. You may also use NHibernate's
direct SQL query feature or get a plain ADO.NET connection from an ISession in rare cases.

Since NHibernate 5.0, the session and its queries IO bound methods have async counterparts. Each call to an
async method must be awaited before further interacting with the session or its queries.

1.5. Finally

We only scratched the surface of NHibernate in this small tutorial. Please note that we don't include any
ASP.NET specific code in our examples. You have to create an ASP.NET page yourself and insert the
NHibernate code as you see fit.

Keep in mind that NHibernate, as a data access layer, is tightly integrated into your application. Usually, all
other layers depend on the persistence mechanism. Make sure you understand the implications of this design.

Quick-start with IIS and Microsoft SQL Server

NHibernate 5.1 6

Chapter 2. Architecture

2.1. Overview

A (very) high-level view of the NHibernate architecture:

This diagram shows NHibernate using the database and configuration data to provide persistence services (and
persistent objects) to the application.

We would like to show a more detailed view of the runtime architecture. Unfortunately, NHibernate is flexible
and supports several approaches. We will show the two extremes. The "lite" architecture has the application
provide its own ADO.NET connections and manage its own transactions. This approach uses a minimal subset
of NHibernate's APIs:

NHibernate 5.1 7

The "full cream" architecture abstracts the application away from the underlying ADO.NET APIs and lets
NHibernate take care of the details.

Here are some definitions of the objects in the diagrams:

ISessionFactory (NHibernate.ISessionFactory)
A threadsafe (immutable) cache of compiled mappings for a single database. A factory for ISession and a
client of IConnectionProvider. Might hold an optional (second-level) cache of data that is reusable

Architecture

NHibernate 5.1 8

between transactions, at a process- or cluster-level.

ISession (NHibernate.ISession)
A single-threaded, short-lived object representing a conversation between the application and the persistent
store. Wraps an ADO.NET connection. Factory for ITransaction. Holds a mandatory (first-level) cache of
persistent objects, used when navigating the object graph or looking up objects by identifier.

Persistent Objects and Collections
Short-lived, single threaded objects containing persistent state and business function. These might be ordin-
ary POCOs, the only special thing about them is that they are currently associated with (exactly one) ISes-
sion. As soon as the Session is closed, they will be detached and free to use in any application layer (e.g.
directly as data transfer objects to and from presentation).

Transient Objects and Collections
Instances of persistent classes that are not currently associated with a ISession. They may have been in-
stantiated by the application and not (yet) persisted or they may have been instantiated by a closed ISes-

sion.

ITransaction (NHibernate.ITransaction)
(Optional) A single-threaded, short-lived object used by the application to specify atomic units of work.
Abstracts application from underlying ADO.NET transaction. An ISession might span several ITransac-
tions in some cases. Transaction scopes may be used instead.

IConnectionProvider (NHibernate.Connection.IConnectionProvider)
(Optional) A factory for ADO.NET connections and commands. Abstracts application from the concrete
vendor-specific implementations of DbConnection and DbCommand. Not exposed to application, but can be
extended/implemented by the developer.

IDriver (NHibernate.Driver.IDriver)
(Optional) An interface encapsulating differences between ADO.NET providers, such as parameter naming
conventions and supported ADO.NET features.

ITransactionFactory (NHibernate.Transaction.ITransactionFactory)
(Optional) A factory for ITransaction instances. Not exposed to the application, but can be extended/
implemented by the developer.

Given a "lite" architecture, the application bypasses the ITransaction/ITransactionFactory and/or IConnec-
tionProvider APIs to talk to ADO.NET directly.

2.2. Instance states

An instance of a persistent classes may be in one of three different states, which are defined with respect to a
persistence context. The NHibernate ISession object is the persistence context:

transient
The instance is not, and has never been associated with any persistence context. It has no persistent identity
(primary key value).

persistent
The instance is currently associated with a persistence context. It has a persistent identity (primary key
value) and, perhaps, a corresponding row in the database. For a particular persistence context, NHibernate
guarantees that persistent identity is equivalent to CLR identity (in-memory location of the object).

Architecture

NHibernate 5.1 9

detached
The instance was once associated with a persistence context, but that context was closed, or the instance
was serialized to another process. It has a persistent identity and, perhaps, a corresponding row in the data-
base. For detached instances, NHibernate makes no guarantees about the relationship between persistent
identity and CLR identity.

2.3. Contextual Sessions

Most applications using NHibernate need some form of "contextual" sessions, where a given session is in effect
throughout the scope of a given context. However, across applications the definition of what constitutes a con-
text is typically different; and different contexts define different scopes to the notion of current.

Starting with version 1.2, NHibernate added the ISessionFactory.GetCurrentSession() method. The pro-
cessing behind ISessionFactory.GetCurrentSession() is pluggable. An extension interface (NHibern-
ate.Context.ICurrentSessionContext) and a new configuration parameter (cur-
rent_session_context_class) have been added to allow pluggability of the scope and context of defining cur-
rent sessions.

See the API documentation for the NHibernate.Context.ICurrentSessionContext interface for a detailed dis-
cussion of its contract. It defines a single method, CurrentSession(), by which the implementation is respons-
ible for tracking the current contextual session. Out-of-the-box, NHibernate comes with several implementa-
tions of this interface:

• NHibernate.Context.AsyncLocalSessionContext - current sessions are tracked by current asynchronous
flow. You are responsible to bind and unbind an ISession instance with static methods of class Current-

SessionContext. Binding operations from inner flows will not be propagated to outer or siblings flows.
Added in NHibernate 5.0.

• NHibernate.Context.CallSessionContext - current sessions are tracked by CallContext. You are re-
sponsible to bind and unbind an ISession instance with static methods of class CurrentSessionContext.

• NHibernate.Context.ThreadStaticSessionContext - current session is stored in a thread-static variable.
This context supports multiple session factory only since NHibernate v5. You are responsible to bind and
unbind an ISession instance with static methods of class CurrentSessionContext.

• NHibernate.Context.WebSessionContext - stores the current session in HttpContext. You are responsible
to bind and unbind an ISession instance with static methods of class CurrentSessionContext.

• NHibernate.Context.WcfOperationSessionContext - current sessions are tracked by WCF Operation-

Context. You need to register the WcfStateExtension extension in WCF. You are responsible to bind and
unbind an ISession instance with static methods of class CurrentSessionContext.

• NHibernate.Context.ManagedWebSessionContext - current sessions are tracked by HttpContext. Re-
moved in NHibernate 4.0 - NHibernate.Context.WebSessionContext should be used instead. You are re-
sponsible to bind and unbind an ISession instance with static methods on this class, it never opens, flushes,
or closes an ISession itself.

The current_session_context_class configuration parameter defines which NHibern-

ate.Context.ICurrentSessionContext implementation should be used. Typically, the value of this parameter
would just name the implementation class to use (including the assembly name); for the out-of-the-box imple-
mentations, however, there are corresponding short names: async_local, call, thread_static, web and
wcf_operation, respectively.

Architecture

NHibernate 5.1 10

Chapter 3. ISessionFactory Configuration
Because NHibernate is designed to operate in many different environments, there are a large number of config-
uration parameters. Fortunately, most have sensible default values and NHibernate is distributed with an ex-
ample App.config file (found in src\NHibernate.Test) that shows the various options. You usually only have
to put that file in your project and customize it.

3.1. Programmatic Configuration

An instance of NHibernate.Cfg.Configuration represents an entire set of mappings of an application's .NET
types to a SQL database. The Configuration is used to build an (immutable) ISessionFactory. The mappings
are compiled from various XML mapping files.

You may obtain a Configuration instance by instantiating it directly. Here is an example of setting up a data-
store from mappings defined in two XML configuration files:

Configuration cfg = new Configuration()
.AddFile("Item.hbm.xml")
.AddFile("Bid.hbm.xml");

An alternative (sometimes better) way is to let NHibernate load a mapping file from an embedded resource:

Configuration cfg = new Configuration()
.AddClass(typeof(NHibernate.Auction.Item))
.AddClass(typeof(NHibernate.Auction.Bid));

Then NHibernate will look for mapping files named NHibernate.Auction.Item.hbm.xml and NHibern-

ate.Auction.Bid.hbm.xml embedded as resources in the assembly that the types are contained in. This ap-
proach eliminates any hardcoded filenames.

Another alternative (probably the best) way is to let NHibernate load all of the mapping files contained in an
Assembly:

Configuration cfg = new Configuration()
.AddAssembly("NHibernate.Auction");

Then NHibernate will look through the assembly for any resources that end with .hbm.xml. This approach
eliminates any hardcoded filenames and ensures the mapping files in the assembly get added.

If a tool like Visual Studio .NET or NAnt is used to build the assembly, then make sure that the .hbm.xml files
are compiled into the assembly as Embedded Resources.

A Configuration also specifies various optional properties:

var props = new Dictionary<string, string>();
...
Configuration cfg = new Configuration()

.AddClass(typeof(NHibernate.Auction.Item))

.AddClass(typeof(NHibernate.Auction.Bind))

.SetProperties(props);

A Configuration is intended as a configuration-time object, to be discarded once an ISessionFactory is built.

NHibernate 5.1 11

3.2. Obtaining an ISessionFactory

When all mappings have been parsed by the Configuration, the application must obtain a factory for ISession
instances. This factory is intended to be shared by all application threads:

ISessionFactory sessions = cfg.BuildSessionFactory();

However, NHibernate does allow your application to instantiate more than one ISessionFactory. This is use-
ful if you are using more than one database.

3.3. User provided ADO.NET connection

An ISessionFactory may open an ISession on a user-provided ADO.NET connection. This design choice
frees the application to obtain ADO.NET connections wherever it pleases:

var conn = myApp.GetOpenConnection();
var session = sessions.OpenSession(conn);

// do some data access work

The application must be careful not to open two concurrent ISessions on the same ADO.NET connection!

3.4. NHibernate provided ADO.NET connection

Alternatively, you can have the ISessionFactory open connections for you. The ISessionFactory must be
provided with ADO.NET connection properties in one of the following ways:

1. Pass an instance of IDictionary mapping property names to property values to Configura-

tion.SetProperties().
2. Include <property> elements in a configuration section in the application configuration file. The section

should be named hibernate-configuration and its handler set to NHibern-

ate.Cfg.ConfigurationSectionHandler. The XML namespace of the section should be set to
urn:nhibernate-configuration-2.2.

3. Include <property> elements in hibernate.cfg.xml (discussed later).

If you take this approach, opening an ISession is as simple as:

ISession session = sessions.OpenSession(); // open a new Session
// do some data access work, an ADO.NET connection will be used on demand

All NHibernate property names and semantics are defined on the class NHibernate.Cfg.Environment. We will
now describe the most important settings for ADO.NET connection configuration.

NHibernate will obtain (and pool) connections using an ADO.NET data provider if you set the following prop-
erties:

Table 3.1. NHibernate ADO.NET Properties

Property name Purpose

connection.provider The type of a custom IConnectionProvider imple-
mentation.

ISessionFactory Configuration

NHibernate 5.1 12

Property name Purpose

eg. full.classname.of.ConnectionProvider if the
Provider is built into NHibernate, or
full.classname.of.ConnectionProvider, as-

sembly if using an implementation of IConnection-

Provider not included in NHibernate. The default is
NHibern-

ate.Connection.DriverConnectionProvider.

connection.driver_class The type of a custom IDriver, if using DriverCon-

nectionProvider.

eg. full.classname.of.Driver if the Driver is built
into NHibernate, or full.classname.of.Driver,

assembly if using an implementation of IDriver not
included in NHibernate.

This is usually not needed, most of the time the dia-

lect will take care of setting the IDriver using a
sensible default. See the API documentation of the
specific dialect for the defaults.

connection.connection_string Connection string to use to obtain the connection.

connection.connection_string_name The name of the connection string (defined in
<connectionStrings> configuration file element) to
use to obtain the connection.

connection.isolation Set the ADO.NET transaction isolation level. Check
System.Data.IsolationLevel for meaningful values
and the database's documentation to ensure that level
is supported.

eg. Chaos | ReadCommitted | ReadUncommitted | Re-
peatableRead | Serializable | Unspecified

connection.release_mode Specify when NHibernate should release ADO.NET
connections. See Section 11.7, “Connection Release
Modes”.

eg. auto (default) | on_close | after_transaction

Note that for ISessions obtained through ISession-

Factory.GetCurrentSession, the ICurrentSession-

Context implementation configured for use may con-
trol the connection release mode for those ISessions.
See Section 2.3, “Contextual Sessions”.

prepare_sql Specify to prepare DbCommands generated by
NHibernate. Defaults to false.

eg. true | false

command_timeout Specify the default timeout in seconds of DbCommands
generated by NHibernate. Negative values disable it.

ISessionFactory Configuration

NHibernate 5.1 13

Property name Purpose

eg. 30

adonet.batch_size Specify the batch size to use when batching update
statements. Setting this to 0 (the default) disables the
functionality. See Section 20.6, “Batch updates”.

eg. 20

order_inserts Enable ordering of insert statements for the purpose
of more efficient batching. Defaults to true if batch-
ing is enabled, false otherwise.

eg. true | false

order_updates Enable ordering of update statements for the purpose
of more efficient batching. Defaults to true if batch-
ing is enabled, false otherwise.

eg. true | false

adonet.batch_versioned_data If batching is enabled, specify that versioned data can
also be batched. Requires a dialect which batcher cor-
rectly returns rows count. Defaults to false.

eg. true | false

adonet.factory_class The class name of a IBatcherFactory implementa-
tion.

This is usually not needed, most of the time the
driver will take care of setting the IBatcherFactory

using a sensible default according to the database
capabilities.

eg. classname.of.BatcherFactory, assembly

adonet.wrap_result_sets Some database vendor data reader implementation
have inefficient columnName-to-columnIndex resolu-
tion. Enabling this setting allows to wrap them in a
data reader that will cache those resolutions. Defaults
to false.

eg. true | false

This is an example of how to specify the database connection properties inside a web.config:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<configSections>
<section name="hibernate-configuration"

type="NHibernate.Cfg.ConfigurationSectionHandler, NHibernate" />
</configSections>

<hibernate-configuration xmlns="urn:nhibernate-configuration-2.2">
<session-factory>
<property name="dialect">NHibernate.Dialect.MsSql2012Dialect</property>

ISessionFactory Configuration

NHibernate 5.1 14

<property name="connection.connection_string">
Server=(local);initial catalog=theDb;Integrated Security=SSPI

</property>
<property name="connection.isolation">ReadCommitted</property>

</session-factory>
</hibernate-configuration>

<!-- other app specific config follows -->
</configuration>

NHibernate relies on the ADO.NET data provider implementation of connection pooling.

You may define your own plug-in strategy for obtaining ADO.NET connections by implementing the interface
NHibernate.Connection.IConnectionProvider. You may select a custom implementation by setting connec-

tion.provider.

3.5. Optional configuration properties

There are a number of other properties that control the behaviour of NHibernate at runtime. All are optional and
have reasonable default values.

Some properties are system-level properties. They can only be set manually by setting static properties of
NHibernate.Cfg.Environment class or be defined in the <hibernate-configuration> section of the applica-
tion configuration file. These properties cannot be set using Configuration.SetProperties or the hibern-

ate.cfg.xml configuration file.

Table 3.2. NHibernate Configuration Properties

Property name Purpose

dialect The class name of a NHibernate Dialect - enables
certain platform dependent features. See Sec-
tion 3.5.1, “SQL Dialects”.

eg. full.classname.of.Dialect, assembly

default_catalog Qualify unqualified table names with the given cata-
log name in generated SQL.

eg. CATALOG_NAME

default_schema Qualify unqualified table names with the given
schema/table-space in generated SQL.

eg. SCHEMA_NAME

max_fetch_depth Set a maximum "depth" for the outer join fetch tree
for single-ended associations (one-to-one, many-
to-one). A 0 disables default outer join fetching.

eg. recommended values between 0 and 3

use_reflection_optimizer Enables use of a runtime-generated class to set or get
properties of an entity or component instead of using
runtime reflection. This is a system-level property.
The use of the reflection optimizer inflicts a certain

ISessionFactory Configuration

NHibernate 5.1 15

Property name Purpose

startup cost on the application but should lead to bet-
ter performance in the long run. Defaults to true.

You can not set this property in hibernate.cfg.xml,
but only in <hibernate-configuration> section of
the application configuration file or by code by set-
ting NHibern-

ate.Cfg.Environment.UseReflectionOptimizer be-
fore creating any NHibernate.Cfg.Configuration

instance.

eg. true | false

bytecode.provider Specifies the bytecode provider to use to optimize the
use of reflection in NHibernate. This is a system-level
property. Use null to disable the optimization com-
pletely, lcg to use built-in lightweight code genera-
tion, or the class name of a custom IBytecodePro-

vider implementation. Defaults to lcg.

You can not set this property in hibernate.cfg.xml,
but only in <hibernate-configuration> section of
the application configuration file or by code by set-
ting NHibern-

ate.Cfg.Environment.BytecodeProvider before
creating any NHibernate.Cfg.Configuration in-
stance.

eg. null | lcg | classname.of.BytecodeProvider,

assembly

cache.use_second_level_cache Enable the second level cache. Requires specifying a
cache.provider_class. See Chapter 26, NHibern-
ate.Caches. Defaults to false.

eg. true | false

cache.provider_class The class name of a ICacheProvider implementation.

eg. classname.of.CacheProvider, assembly

cache.use_minimal_puts Optimize second-level cache operation to minimize
writes, at the cost of more frequent reads (useful for
clustered caches). Defaults to false.

eg. true | false

cache.use_query_cache Enable the query cache, individual queries still have
to be set cacheable. Defaults to false.

eg. true | false

cache.query_cache_factory The class name of a custom IQueryCacheFactory im-
plementation. Defaults to the built-in Stand-

ardQueryCacheFactory.

ISessionFactory Configuration

NHibernate 5.1 16

Property name Purpose

eg. classname.of.QueryCacheFactory, assembly

cache.region_prefix A prefix to use for second-level cache region names.

eg. prefix

cache.default_expiration The default expiration delay in seconds for cached
entries, for providers supporting this setting.

eg. 300

query.substitutions Mapping from tokens in NHibernate queries to SQL
tokens (tokens might be function or literal names, for
example).

eg. hqlLiteral=SQL_LITERAL, hqlFunc-

tion=SQLFUNC

query.default_cast_length Set the default length used in casting when the target
type is length bound and does not specify it. Defaults
to 4000, automatically trimmed down according to
dialect type registration.

eg. 255

query.default_cast_precision Set the default precision used in casting when the tar-
get type is decimal and does not specify it. Defaults to
28, automatically trimmed down according to dialect
type registration.

eg. 19

query.default_cast_scale Set the default scale used in casting when the target
type is decimal and does not specify it. Defaults to 10,
automatically trimmed down according to dialect type
registration.

eg. 5

query.startup_check Should named queries be checked during startup (the
default is enabled).

eg. true | false

query.factory_class The class name of a custom IQueryTranslatorFact-

ory implementation (HQL query parser factory). De-
faults to the built-in ASTQueryTranslatorFactory.

eg. classname.of.QueryTranslatorFactory, as-

sembly

query.linq_provider_class The class name of a custom INhQueryProvider im-
plementation (LINQ provider). Defaults to the built-
in DefaultQueryProvider.

eg. classname.of.LinqProvider, assembly

ISessionFactory Configuration

NHibernate 5.1 17

Property name Purpose

query.query_model_rewriter_factory The class name of a custom IQueryModelRewriter-

Factory implementation (LINQ query model rewriter
factory). Defaults to null (no rewriter).

eg. classname.of.QueryModelRewriterFactory,

assembly

linqtohql.generatorsregistry The class name of a custom ILinqToHqlGenerator-

sRegistry implementation. Defaults to the built-in
DefaultLinqToHqlGeneratorsRegistry. See Sec-
tion 17.8.2, “Adding a custom generator”.

eg. classname.of.LinqToHqlGeneratorsRegistry,

assembly

sql_exception_converter The class name of a custom ISQLExceptionConvert-

er implementation. Defaults to Dia-

lect.BuildSQLExceptionConverter().

eg. classname.of.SQLExceptionConverter, as-

sembly

show_sql Write all SQL statements to console. Defaults to
false.

eg. true | false

format_sql Log formatted SQL. Defaults to false.

eg. true | false

use_sql_comments Generate SQL with comments. Defaults to false.

eg. true | false

hbm2ddl.auto Automatically export schema DDL to the database
when the ISessionFactory is created. With create-

drop, the database schema will be dropped when the
ISessionFactory is closed explicitly.

eg. create | create-drop

hbm2ddl.keywords Automatically import reserved/keywords from the
database when the ISessionFactory is created.

none : disable any operation regarding RDBMS
KeyWords (the default).

keywords : imports all RDBMS KeyWords where the
Dialect can provide the implementation of IData-

BaseSchema.

auto-quote : imports all RDBMS KeyWords and
auto-quote all table-names/column-names.

eg. none | keywords | auto-quote

ISessionFactory Configuration

NHibernate 5.1 18

Property name Purpose

use_proxy_validator Enables or disables validation of interfaces or classes
specified as proxies. Enabled by default.

eg. true | false

proxyfactory.factory_class The class name of a custom IProxyFactoryFactory

implementation. Defaults to the built-in Default-

ProxyFactoryFactory.

eg. classname.of.ProxyFactoryFactory, assembly

collectiontype.factory_class The class name of a custom ICollectionTypeFact-

ory implementation. Defaults to the built-in Default-

CollectionTypeFactory.

eg. classname.of.CollectionTypeFactory, as-

sembly

transaction.factory_class The class name of a custom ITransactionFactory

implementation. Defaults to the built-in AdoNetWith-

SystemTransactionFactory.

eg. classname.of.TransactionFactory, assembly

transaction.use_connection_on_system_prepare When a system transaction is being prepared, is using
connection during this process enabled?

Default is true, for supporting FlushMode.Commit

with transaction factories supporting system transac-
tions. But this requires enlisting additional connec-
tions, retaining disposed sessions and their connec-
tions until transaction end, and may trigger undesired
transaction promotions to distributed.

Set to false for disabling using connections from
system transaction preparation, while still benefiting
from FlushMode.Auto on querying.

See Section 11.8, “Transaction scopes
(System.Transactions)”.

eg. true | false

transaction.system_completion_lock_timeout Timeout duration in milliseconds for the system
transaction completion lock.

When a system transaction completes, it may have its
completion events running on concurrent threads,
after scope disposal. This occurs when the transaction
is distributed. This notably concerns ISessionImple-

mentor.AfterTransactionCompletion(bool,

ITransaction). NHibernate protects the session from
being concurrently used by the code following the
scope disposal with a lock. To prevent any applica-
tion freeze, this lock has a default timeout of five

ISessionFactory Configuration

NHibernate 5.1 19

Property name Purpose

seconds. If the application appears to require longer
(!) running transaction completion events, this setting
allows to raise this timeout. -1 disables the timeout.

eg. 10000

default_flush_mode The default FlushMode, Auto when not specified. See
Section 9.6, “Flush”.

eg. Manual | Commit | Auto | Always

default_batch_fetch_size The default batch fetch size to use when lazily load-
ing an entity or collection. Defaults to 1. See Sec-
tion 20.1.5, “Using batch fetching”.

eg. 20

current_session_context_class The class name of an ICurrentSessionContext im-
plementation. See Section 2.3, “Contextual Sessions”.

eg. classname.of.CurrentSessionContext, as-

sembly

id.optimizer.pooled.prefer_lo When using an enhanced id generator and pooled op-
timizers (see Section 5.1.5.8, “Enhanced identifier
generators”), prefer interpreting the database value as
the lower (lo) boundary. The default is to interpret it
as the high boundary.

eg. true | false

generate_statistics Enable statistics collection within ISessionFact-

ory.Statistics property. Defaults to false.

eg. true | false

track_session_id Set whether the session id should be tracked in logs
or not. When true, each session will have an unique
Guid that can be retrieved with ISessionImplement-

or.SessionId, otherwise ISessionImplement-

or.SessionId will be Guid.Empty.

Session id is used for logging purpose and can also be
retrieved on the static property NHibern-

ate.Impl.SessionIdLoggingContext.SessionId,
when tracking is enabled.

Disabling tracking by setting track_session_id to
false increases performances. Default is true.

eg. true | false

sql_types.keep_datetime Since NHibernate v5.0 and if the dialect supports it,
DbType.DateTime2 is used instead of Db-

Type.DateTime. This may be disabled by setting
sql_types.keep_datetime to true. Defaults to

ISessionFactory Configuration

NHibernate 5.1 20

Property name Purpose

false.

eg. true | false

oracle.use_n_prefixed_types_for_unicode
Oracle has a dual Unicode support model.

Either the whole database use an Unicode encoding,
and then all string types will be Unicode. In such
case, Unicode strings should be mapped to non N pre-
fixed types, such as Varchar2. This is the default.

Or N prefixed types such as NVarchar2 are to be used
for Unicode strings, the others type are using a non
Unicode encoding. In such case this setting needs to
be set to true.

See Implementing a Unicode Solution in the Database
[https://docs.oracle.com/cd/B19306_01/server.102/b1
4225/ch6unicode.htm#CACHCAHF]. This setting
applies only to Oracle dialects and ODP.Net managed
or unmanaged driver.

eg. true | false

odbc.explicit_datetime_scale This may need to be set to 3 if you are using the Odb-

cDriver with MS SQL Server 2008+.

This is intended to work around issues like:

System.Data.Odbc.OdbcException :
ERROR [22008]
[Microsoft][SQL Server Native Client 11.0]
Datetime field overflow. Fractional second
precision exceeds the scale specified
in the parameter binding.

eg. 3

nhibernate-logger The class name of an ILoggerFactory implementa-
tion. It allows using another logger than log4net.

The default is not defined, which causes NHibernate
to search for log4net assembly. If this search suc-
ceeds, NHibernate will log with log4net. Otherwise,
its internal logging will be disabled.

This is a very special system-level property. It can
only be set through an appSetting
[https://docs.microsoft.com/en-us/dotnet/framework/c
onfigure-apps/file-schema/appsettings/] named
nhibernate-logger in the application configuration
file. It cannot be set neither with NHibern-

ate.Cfg.Environment class, nor be defined in the
<hibernate-configuration> section of the applica-
tion configuration file, nor supplied by using Config-

ISessionFactory Configuration

NHibernate 5.1 21

https://docs.oracle.com/cd/B19306_01/server.102/b14225/ch6unicode.htm#CACHCAHF
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/appsettings/

Property name Purpose

uration.SetProperties, nor set in the hibern-

ate.cfg.xml configuration file.

eg. classname.of.LoggerFactory, assembly

3.5.1. SQL Dialects

You should always set the dialect property to the correct NHibernate.Dialect.Dialect subclass for your
database. This is not strictly essential unless you wish to use native or sequence primary key generation or
pessimistic locking (with, eg. ISession.Lock() or IQuery.SetLockMode()). However, if you specify a dialect,
NHibernate will use sensible defaults for some of the other properties listed above, saving you the effort of spe-
cifying them manually.

Table 3.3. NHibernate SQL Dialects (dialect)

RDBMS Dialect Remarks

DB2 NHibernate.Dialect.DB2Dialect

DB2 for iSeries
(OS/400)

NHibernate.Dialect.DB2400Dialect

Firebird NHibernate.Dialect.FirebirdDialect Set driver_class to NHibern-

ate.Driver.FirebirdClientDriver for
Firebird ADO.NET provider 2.0.

Informix NHibernate.Dialect.InformixDialect

Informix 9.40 NHibern-

ate.Dialect.InformixDialect0940

Informix 10.00 NHibern-

ate.Dialect.InformixDialect1000

Ingres NHibernate.Dialect.IngresDialect

Ingres 9 NHibernate.Dialect.Ingres9Dialect

Microsoft SQL
Server 7

NHibernate.Dialect.MsSql7Dialect

Microsoft SQL
Server 2000

NHibernate.Dialect.MsSql2000Dialect

Microsoft SQL
Server 2005

NHibernate.Dialect.MsSql2005Dialect

Microsoft SQL
Server 2008

NHibernate.Dialect.MsSql2008Dialect

Microsoft SQL
Azure Server
2008

NHibern-

ate.Dialect.MsSqlAzure2008Dialect

Microsoft SQL NHibernate.Dialect.MsSql2012Dialect

ISessionFactory Configuration

NHibernate 5.1 22

RDBMS Dialect Remarks

Server 2012

Microsoft SQL
Server Compact
Edition

NHibernate.Dialect.MsSqlCeDialect

Microsoft SQL
Server Compact
Edition 4.0

NHibernate.Dialect.MsSqlCe40Dialect

MySQL 3 or 4 NHibernate.Dialect.MySQLDialect

MySQL 5 NHibernate.Dialect.MySQL5Dialect

MySQL 5 Inno
DB

NHibern-

ate.Dialect.MySQL5InnoDBDialect

MySQL 5.5 NHibernate.Dialect.MySQL55Dialect

MySQL 5.5
Inno DB

NHibern-

ate.Dialect.MySQL55InnoDBDialect

Oracle NHibernate.Dialect.Oracle8iDialect

Oracle 9i NHibernate.Dialect.Oracle9iDialect

Oracle 10g, Or-
acle 11g

NHibernate.Dialect.Oracle10gDialect

Oracle 12c NHibernate.Dialect.Oracle12cDialect

PostgreSQL NHibernate.Dialect.PostgreSQLDialect

PostgreSQL NHibernate.Dialect.PostgreSQLDialect

PostgreSQL 8.1 NHibern-

ate.Dialect.PostgreSQL81Dialect

This dialect supports FOR UPDATE NOWAIT

available in PostgreSQL 8.1.

PostgreSQL 8.2 NHibern-

ate.Dialect.PostgreSQL82Dialect

This dialect supports IF EXISTS keyword in
DROP TABLE and DROP SEQUENCE available in
PostgreSQL 8.2.

PostgreSQL 8.3 NHibern-

ate.Dialect.PostgreSQL83Dialect

This dialect supports XML type.

SQLite NHibernate.Dialect.SQLiteDialect Set driver_class to NHibern-

ate.Driver.SQLite20Driver for Sys-
tem.Data.SQLite provider for .NET 2.0.

Due to the behavior of System.Data.SQLite
[https://system.data.sqlite.org/index.html/tkt
view/
44a0955ea344a777ffdbcc077831e1adc8b77
a36] with DateTime, consider using Date-

TimeFormatString=yyyy-MM-dd

HH:mm:ss.FFFFFFF; in the SQLite connec-
tion string for preventing undesired time
shifts with its default configuration.

ISessionFactory Configuration

NHibernate 5.1 23

https://system.data.sqlite.org/index.html/tktview/44a0955ea344a777ffdbcc077831e1adc8b77a36

RDBMS Dialect Remarks

Sybase Adapt-
ive Server Any-
where 9

NHibernate.Dialect.SybaseASA9Dialect

Sybase Adapt-
ive Server En-
terprise 15

NHibernate.Dialect.SybaseASE15Dialect

Sybase SQL
Anywhere 10

NHibern-

ate.Dialect.SybaseSQLAnywhere10Dialec

t

Sybase SQL
Anywhere 11

NHibern-

ate.Dialect.SybaseSQLAnywhere11Dialec

t

Sybase SQL
Anywhere 12

NHibern-

ate.Dialect.SybaseSQLAnywhere12Dialec

t

Additional dialects may be available in the NHibernate.Dialect namespace.

3.5.2. Outer Join Fetching

If your database supports ANSI or Oracle style outer joins, outer join fetching might increase performance by
limiting the number of round trips to and from the database (at the cost of possibly more work performed by the
database itself). Outer join fetching allows a graph of objects connected by many-to-one, one-to-many or one-
to-one associations to be retrieved in a single SQL SELECT.

By default, the fetched graph when loading an objects ends at leaf objects, collections, objects with proxies, or
where circularities occur.

For a particular association, fetching may be configured (and the default behaviour overridden) by setting the
fetch attribute in the XML mapping.

Outer join fetching may be disabled globally by setting the property max_fetch_depth to 0. A setting of 1 or
higher enables outer join fetching for one-to-one and many-to-one associations which have been mapped with
fetch="join".

See Section 20.1, “Fetching strategies” for more information.

In NHibernate 1.0, outer-join attribute could be used to achieve a similar effect. This attribute is now deprec-
ated in favor of fetch.

3.5.3. Custom ICacheProvider

You may integrate a process-level (or clustered) second-level cache system by implementing the interface
NHibernate.Cache.ICacheProvider. You may select the custom implementation by setting
cache.provider_class. See the Section 20.2, “The Second Level Cache” for more details.

3.5.4. Query Language Substitution

ISessionFactory Configuration

NHibernate 5.1 24

You may define new NHibernate query tokens using query.substitutions. For example:

query.substitutions true=1, false=0

would cause the tokens true and false to be translated to integer literals in the generated SQL.

query.substitutions toLowercase=LOWER

would allow you to rename the SQL LOWER function.

3.6. Logging

NHibernate logs various events using Apache log4net.

You may download log4net from https://logging.apache.org/log4net/, or install it with NuGet. To use log4net
you will need a log4net configuration section in the application configuration file. An example of the configur-
ation section is distributed with NHibernate in the src/NHibernate.Test project.

We strongly recommend that you familiarize yourself with NHibernate's log messages. A lot of work has been
put into making the NHibernate log as detailed as possible, without making it unreadable. It is an essential
troubleshooting device. Also don't forget to enable SQL logging as described above (show_sql), it is your first
step when looking for performance problems.

3.7. Implementing an INamingStrategy

The interface NHibernate.Cfg.INamingStrategy allows you to specify a "naming standard" for database ob-
jects and schema elements.

You may provide rules for automatically generating database identifiers from .NET identifiers or for processing
"logical" column and table names given in the mapping file into "physical" table and column names. This fea-
ture helps reduce the verbosity of the mapping document, eliminating repetitive noise (TBL_ prefixes, for ex-
ample). The default strategy used by NHibernate is quite minimal.

You may specify a different strategy by calling Configuration.SetNamingStrategy() before adding map-
pings:

ISessionFactory sf = new Configuration()
.SetNamingStrategy(ImprovedNamingStrategy.Instance)
.AddFile("Item.hbm.xml")
.AddFile("Bid.hbm.xml")
.BuildSessionFactory();

NHibernate.Cfg.ImprovedNamingStrategy is a built-in strategy that might be a useful starting point for some
applications.

3.8. XML Configuration File

An alternative approach is to specify a full configuration in a file named hibernate.cfg.xml. This file can be
used as a replacement for the <hibernate-configuration> sections of the application configuration file.

The XML configuration file is by default expected to be in your application directory. Here is an example:

ISessionFactory Configuration

NHibernate 5.1 25

https://logging.apache.org/log4net/

<?xml version='1.0' encoding='utf-8'?>
<hibernate-configuration xmlns="urn:nhibernate-configuration-2.2">

<!-- an ISessionFactory instance -->
<session-factory>

<!-- properties -->
<property name="connection.connection_string">
Server=localhost;initial catalog=nhibernate;User Id=;Password=

</property>
<property name="show_sql">false</property>
<property name="dialect">NHibernate.Dialect.MsSql2012Dialect</property>

<!-- mapping files -->
<mapping resource="NHibernate.Auction.Item.hbm.xml" assembly="NHibernate.Auction" />
<mapping resource="NHibernate.Auction.Bid.hbm.xml" assembly="NHibernate.Auction" />

</session-factory>

</hibernate-configuration>

Configuring NHibernate is then as simple as

ISessionFactory sf = new Configuration().Configure().BuildSessionFactory();

You can pick a different XML configuration file using

ISessionFactory sf = new Configuration()
.Configure("/path/to/config.cfg.xml")
.BuildSessionFactory();

ISessionFactory Configuration

NHibernate 5.1 26

Chapter 4. Persistent Classes
Persistent classes are classes in an application that implement the entities of the business problem (e.g. Custom-
er and Order in an E-commerce application). Persistent classes have, as the name implies, transient and also
persistent instance stored in the database.

NHibernate works best if these classes follow some simple rules, also known as the Plain Old CLR Object
(POCO) programming model.

4.1. A simple POCO example

Most .NET applications require a persistent class representing felines.

using System;
using System.Collections.Generic;

namespace Eg
{

public class Cat
{

long _id;
// identifier

public virtual long Id
{

get { return _id; }
protected set { _id = value; }

}

public virtual string Name { get; set; }
public virtual Cat Mate { get; set; }
public virtual DateTime Birthdate { get; set; }
public virtual float Weight { get; set; }
public virtual Color Color { get; set; }
public virtual ISet<Cat> Kittens { get; set; }
public virtual char Sex { get; set; }

// AddKitten not needed by NHibernate
public virtual void AddKitten(Cat kitten)
{

kittens.Add(kitten);
}

}
}

There are four main rules to follow here:

4.1.1. Declare properties for persistent fields

Cat declares properties for all the persistent fields. Many other ORM tools directly persist instance variables.
We believe it is far better to decouple this implementation detail from the persistence mechanism. NHibernate
persists properties, using their getter and setter methods.

Properties need not be declared public - NHibernate can persist a property with an internal, protected, pro-
tected internal or private visibility.

As shown in the example, both automatic properties and properties with a backing field are supported.

NHibernate 5.1 27

4.1.2. Implement a default constructor

Cat has an implicit default (no-argument) constructor. All persistent classes must have a default constructor
(which may be non-public) so NHibernate can instantiate them using Activator.CreateInstance().

4.1.3. Provide an identifier property (optional)

Cat has a property called Id. This property holds the primary key column of a database table. The property
might have been called anything, and its type might have been any primitive type, string or System.DateTime.
(If your legacy database table has composite keys, you can even use a user-defined class with properties of
these types - see the section on composite identifiers below.)

The identifier property is optional. You can leave it off and let NHibernate keep track of object identifiers in-
ternally. However, for many applications it is still a good (and very popular) design decision.

What's more, some functionality is available only to classes which declare an identifier property:

• Cascaded updates (see "Lifecycle Objects")
• ISession.SaveOrUpdate()

We recommend you declare consistently-named identifier properties on persistent classes.

4.1.4. Prefer non-sealed classes and virtual methods (optional)

A central feature of NHibernate, proxies, depends upon the persistent class being non-sealed and all its public
methods, properties and events declared as virtual. Another possibility is for the class to implement an interface
that declares all public members.

You can persist sealed classes that do not implement an interface and don't have virtual members with
NHibernate, but you won't be able to use proxies - which will limit your options for performance tuning.

4.2. Implementing inheritance

A subclass must also observe the first and second rules. It inherits its identifier property from Cat.

using System;
namespace Eg
{

public class DomesticCat : Cat
{

public virtual string Name { get; set; }
}

}

4.3. Implementing Equals() and GetHashCode()

You have to override the Equals() and GetHashCode() methods if you intend to mix objects of persistent
classes (e.g. in an ISet).

This only applies if these objects are loaded in two different ISessions, as NHibernate only guarantees identity
(a == b , the default implementation of Equals()) inside a single ISession!

Persistent Classes

NHibernate 5.1 28

Even if both objects a and b are the same database row (they have the same primary key value as their identifi-
er), we can't guarantee that they are the same object instance outside of a particular ISession context.

The most obvious way is to implement Equals()/GetHashCode() by comparing the identifier value of both ob-
jects. If the value is the same, both must be the same database row, they are therefore equal (if both are added
to an ISet, we will only have one element in the ISet). Unfortunately, we can't use that approach. NHibernate
will only assign identifier values to objects that are persistent, a newly created instance will not have any identi-
fier value! We recommend implementing Equals() and GetHashCode() using Business key equality.

Business key equality means that the Equals() method compares only the properties that form the business
key, a key that would identify our instance in the real world (a natural candidate key):

public class Cat
{

...
public override bool Equals(object other)
{

if (this == other) return true;

Cat cat = other as Cat;
if (cat == null) return false; // null or not a cat

if (Name != cat.Name) return false;
if (!Birthday.Equals(cat.Birthday)) return false;

return true;
}

public override int GetHashCode()
{

unchecked
{

int result;
result = Name.GetHashCode();
result = 29 * result + Birthday.GetHashCode();
return result;

}
}

}

Keep in mind that our candidate key (in this case a composite of name and birthday) has to be only valid for a
particular comparison operation (maybe even only in a single use case). We don't need the stability criteria we
usually apply to a real primary key!

4.4. Dynamic models

Note that the following features are currently considered experimental and may change in the near future.

Persistent entities don't necessarily have to be represented as POCO classes at runtime. NHibernate also sup-
ports dynamic models (using Dictionaries of Dictionarys at runtime) . With this approach, you don't write
persistent classes, only mapping files.

The following examples demonstrates the representation using Maps (Dictionary). First, in the mapping file, an
entity-name has to be declared instead of a class name:

<hibernate-mapping>

<class entity-name="Customer">

Persistent Classes

NHibernate 5.1 29

<id name="id"
type="long"
column="ID">
<generator class="sequence"/>

</id>

<property name="name"
column="NAME"
type="string"/>

<property name="address"
column="ADDRESS"
type="string"/>

<many-to-one name="organization"
column="ORGANIZATION_ID"
class="Organization"/>

<bag name="orders"
inverse="true"
lazy="false"
cascade="all">
<key column="CUSTOMER_ID"/>
<one-to-many class="Order"/>

</bag>

</class>

</hibernate-mapping>

Note that even though associations are declared using target class names, the target type of an associations may
also be a dynamic entity instead of a POCO.

At runtime we can work with Dictionaries of Dictionaries:

using(ISession s = OpenSession())
using(ITransaction tx = s.BeginTransaction())
{

// Create a customer
var frank = new Dictionary<string, object>();
frank["name"] = "Frank";

// Create an organization
var foobar = new Dictionary<string, object>();
foobar["name"] = "Foobar Inc.";

// Link both
frank["organization"] = foobar;

// Save both
s.Save("Customer", frank);
s.Save("Organization", foobar);

tx.Commit();
}

The advantages of a dynamic mapping are quick turnaround time for prototyping without the need for entity
class implementation. However, you lose compile-time type checking and will very likely deal with many ex-
ceptions at runtime. Thanks to the NHibernate mapping, the database schema can easily be normalized and
sound, allowing to add a proper domain model implementation on top later on.

4.5. Tuplizers

NHibernate.Tuple.Tuplizer, and its sub-interfaces, are responsible for managing a particular representation

Persistent Classes

NHibernate 5.1 30

of a piece of data, given that representation's NHibernate.EntityMode. If a given piece of data is thought of as
a data structure, then a tuplizer is the thing which knows how to create such a data structure and how to extract
values from and inject values into such a data structure. For example, for the POCO entity mode, the corres-
ponding tuplizer knows how create the POCO through its constructor and how to access the POCO properties
using the defined property accessors. There are two high-level types of Tuplizers, represented by the NHibern-

ate.Tuple.Entity.IEntityTuplizer and NHibernate.Tuple.Component.IComponentTuplizer interfaces.
IEntityTuplizers are responsible for managing the above mentioned contracts in regards to entities, while
IComponentTuplizers do the same for components.

Users may also plug in their own tuplizers. Perhaps you require that a System.Collections.IDictionary im-
plementation other than System.Collections.Hashtable be used while in the dynamic-map entity-mode; or
perhaps you need to define a different proxy generation strategy than the one used by default. Both would be
achieved by defining a custom tuplizer implementation. Tuplizers definitions are attached to the entity or com-
ponent mapping they are meant to manage. Going back to the example of our customer entity:

<hibernate-mapping>
<class entity-name="Customer">

<!--
Override the dynamic-map entity-mode
tuplizer for the customer entity

-->
<tuplizer entity-mode="dynamic-map"

class="CustomMapTuplizerImpl"/>

<id name="id" type="long" column="ID">
<generator class="sequence"/>

</id>

<!-- other properties -->
...

</class>
</hibernate-mapping>

public class CustomMapTuplizerImpl : NHibernate.Tuple.Entity.DynamicMapEntityTuplizer
{

// override the BuildInstantiator() method to plug in our custom map...
protected override IInstantiator BuildInstantiator(

NHibernate.Mapping.PersistentClass mappingInfo)
{

return new CustomMapInstantiator(mappingInfo);
}

private sealed class CustomMapInstantiator : NHibernate.Tuple.DynamicMapInstantiator
{

// override the generateMap() method to return our custom map...
protected override IDictionary GenerateMap()
{

return new CustomMap();
}

}
}

4.6. Lifecycle Callbacks

Optionally, a persistent class might implement the interface ILifecycle which provides some callbacks that al-
low the persistent object to perform necessary initialization/cleanup after save or load and before deletion or
update.

The NHibernate IInterceptor offers a less intrusive alternative, however.

public interface ILifecycle

Persistent Classes

NHibernate 5.1 31

{ (1)
LifecycleVeto OnSave(ISession s); (2)
LifecycleVeto OnUpdate(ISession s); (3)
LifecycleVeto OnDelete(ISession s); (4)
void OnLoad(ISession s, object id);

}

(1) OnSave - called just before the object is saved or inserted
(2) OnUpdate - called just before an object is updated (when the object is passed to ISession.Update())
(3) OnDelete - called just before an object is deleted
(4) OnLoad - called just after an object is loaded

OnSave(), OnDelete() and OnUpdate() may be used to cascade saves and deletions of dependent objects. This
is an alternative to declaring cascaded operations in the mapping file. OnLoad() may be used to initialize transi-
ent properties of the object from its persistent state. It may not be used to load dependent objects since the
ISession interface may not be invoked from inside this method. A further intended usage of OnLoad(), On-
Save() and OnUpdate() is to store a reference to the current ISession for later use.

Note that OnUpdate() is not called every time the object's persistent state is updated. It is called only when a
transient object is passed to ISession.Update().

If OnSave(), OnUpdate() or OnDelete() return LifecycleVeto.Veto, the operation is silently vetoed. If a
CallbackException is thrown, the operation is vetoed and the exception is passed back to the application.

Note that OnSave() is called after an identifier is assigned to the object, except when native key generation is
used.

4.7. IValidatable callback

If the persistent class needs to check invariants before its state is persisted, it may implement the following in-
terface:

public interface IValidatable
{

void Validate();
}

The object should throw a ValidationFailure if an invariant was violated. An instance of Validatable should
not change its state from inside Validate().

Unlike the callback methods of the ILifecycle interface, Validate() might be called at unpredictable times.
The application should not rely upon calls to Validate() for business functionality.

Persistent Classes

NHibernate 5.1 32

Chapter 5. Basic O/R Mapping

5.1. Mapping declaration

Object/relational mappings are defined in an XML document. The mapping document is designed to be read-
able and hand-editable. The mapping language is object-centric, meaning that mappings are constructed around
persistent class declarations, not table declarations.

Note that, even though many NHibernate users choose to define XML mappings by hand, a number of tools ex-
ist to generate the mapping document, including NHibernate.Mapping.Attributes library and various template-
based code generators (CodeSmith, MyGeneration). You may also use NHibernate.Mapping.ByCode available
since NHibernate 3.2, or Fluent NHibernate [https://github.com/jagregory/fluent-nhibernate].

Let's kick off with an example mapping:

<?xml version="1.0"?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" assembly="Eg"

namespace="Eg">

<class name="Cat" table="CATS" discriminator-value="C">
<id name="Id" column="uid" type="Int64">

<generator class="hilo"/>
</id>
<discriminator column="subclass" type="Char"/>
<property name="BirthDate" type="Date"/>
<property name="Color" not-null="true"/>
<property name="Sex" not-null="true" update="false"/>
<property name="Weight"/>
<many-to-one name="Mate" column="mate_id"/>
<set name="Kittens">

<key column="mother_id"/>
<one-to-many class="Cat"/>

</set>
<subclass name="DomesticCat" discriminator-value="D">

<property name="Name" type="String"/>
</subclass>

</class>

<class name="Dog">
<!-- mapping for Dog could go here -->

</class>

</hibernate-mapping>

We will now discuss the content of the mapping document. We will only describe the document elements and
attributes that are used by NHibernate at runtime. The mapping document also contains some extra optional at-
tributes and elements that affect the database schemas exported by the schema export tool. (For example the
not-null attribute.)

5.1.1. XML Namespace

All XML mappings should declare the XML namespace shown. The actual schema definition may be found in
the src\nhibernate-mapping.xsd file in the NHibernate distribution.

Tip: to enable IntelliSense for mapping and configuration files, copy the appropriate .xsd files as part of any
project in your solution, (Build Action can be "None") or as "Solution Files" or in your "Lib" folder and then
add it to the Schemas property of the xml file. You can copy it in <VS installation directory>\Xml\Schemas,

NHibernate 5.1 33

https://github.com/jagregory/fluent-nhibernate

take care because you will have to deal with different version of the xsd for different versions of NHibernate.

5.1.2. hibernate-mapping

This element has several optional attributes. The schema attribute specifies that tables referred to by this map-
ping belong to the named schema. If specified, table names will be qualified by the given schema name. If
missing, table names will be unqualified. The default-cascade attribute specifies what cascade style should be
assumed for properties and collections which do not specify a cascade attribute. The auto-import attribute lets
us use unqualified class names in the query language, by default. The assembly and namespace attributes spe-
cify the assembly where persistent classes are located and the namespace they are declared in.

<hibernate-mapping
schema="schemaName" (1)
default-cascade="none|save-update" (2)
auto-import="true|false" (3)
assembly="Eg" (4)
namespace="Eg" (5)
default-access="field|property|field.camecase(6)..."
default-lazy="true|false" (7)

/>

(1) schema (optional): The name of a database schema.
(2) default-cascade (optional - defaults to none): A default cascade style.
(3) auto-import (optional - defaults to true): Specifies whether we can use unqualified class names (of

classes in this mapping) in the query language.
(

5

(4))

assembly and namespace(optional): Specify assembly and namespace to assume for unqualified class
names in the mapping document.

(6) default-access (optional - defaults to property): The strategy NHibernate should use for accessing a
property value

(7) default-lazy (optional - defaults to true): Lazy fetching may be completely disabled by setting default-
lazy="false".

If you are not using assembly and namespace attributes, you have to specify fully-qualified class names, includ-
ing the name of the assembly that classes are declared in.

If you have two persistent classes with the same (unqualified) name, you should set auto-import="false".
NHibernate will throw an exception if you attempt to assign two classes to the same "imported" name.

5.1.3. class

You may declare a persistent class using the class element:

<class
name="ClassName" (1)
table="tableName" (2)
discriminator-value="discriminator_value" (3)
mutable="true|false" (4)
schema="owner" (5)
proxy="ProxyInterface" (6)
dynamic-update="true|false" (7)
dynamic-insert="true|false" (8)
select-before-update="true|false" (9)
polymorphism="implicit|explicit" (10)
where="arbitrary sql where condition" (11)
persister="PersisterClass" (12)
batch-size="N" (13)
optimistic-lock="none|version|dirty|all" (14)
lazy="true|false" (15)

Basic O/R Mapping

NHibernate 5.1 34

abstract="true|false" (16)
/>

(1) name: The fully qualified .NET class name of the persistent class (or interface), including its assembly
name.

(2) table(optional - defaults to the unqualified class name): The name of its database table.
(3) discriminator-value (optional - defaults to the class name): A value that distinguishes individual sub-

classes, used for polymorphic behaviour. Acceptable values include null and not null.
(4) mutable (optional, defaults to true): Specifies that instances of the class are (not) mutable.
(5) schema (optional): Override the schema name specified by the root <hibernate-mapping> element.
(6) proxy (optional): Specifies an interface to use for lazy initializing proxies. You may specify the name of

the class itself.
(7) dynamic-update (optional, defaults to false): Specifies that UPDATE SQL should be generated at runtime

and contain only those columns whose values have changed.
(8) dynamic-insert (optional, defaults to false): Specifies that INSERT SQL should be generated at runtime

and contain only the columns whose values are not null.
(9) select-before-update (optional, defaults to false): Specifies that NHibernate should never perform an

SQL UPDATE unless it is certain that an object is actually modified. In certain cases (actually, only when a
transient object has been associated with a new session using update()), this means that NHibernate will
perform an extra SQL SELECT to determine if an UPDATE is actually required.

(10) polymorphism (optional, defaults to implicit): Determines whether implicit or explicit query polymorph-
ism is used.

(11) where (optional) specify an arbitrary SQL WHERE condition to be used when retrieving objects of this class
(12) persister (optional): Specifies a custom IClassPersister.
(13) batch-size (optional, defaults to 1) specify a "batch size" for fetching instances of this class by identifier.
(14) optimistic-lock (optional, defaults to version): Determines the optimistic locking strategy.
(15) lazy (optional): Lazy fetching may be completely disabled by setting lazy="false".
(16) abstract (optional): Used to mark abstract superclasses in <union-subclass> hierarchies.

It is perfectly acceptable for the named persistent class to be an interface. You would then declare implement-
ing classes of that interface using the <subclass> element. You may persist any inner class. You should specify
the class name using the standard form ie. Eg.Foo+Bar, Eg. Due to an HQL parser limitation inner classes can
not be used in queries in NHibernate 1.0.

Changes to immutable classes, mutable="false", will not be persisted. This allows NHibernate to make some
minor performance optimizations.

The optional proxy attribute enables lazy initialization of persistent instances of the class. NHibernate will ini-
tially return proxies which implement the named interface. The actual persistent object will be loaded when a
method of the proxy is invoked. See "Proxies for Lazy Initialization" below.

Implicit polymorphism means that instances of the class will be returned by a query that names any superclass
or implemented interface or the class and that instances of any subclass of the class will be returned by a query
that names the class itself. Explicit polymorphism means that class instances will be returned only be queries
that explicitly name that class and that queries that name the class will return only instances of subclasses
mapped inside this <class> declaration as a <subclass> or <joined-subclass>. For most purposes the default,
polymorphism="implicit", is appropriate. Explicit polymorphism is useful when two different classes are
mapped to the same table (this allows a "lightweight" class that contains a subset of the table columns).

The persister attribute lets you customize the persistence strategy used for the class. You may, for example,
specify your own subclass of NHibernate.Persister.EntityPersister or you might even provide a com-
pletely new implementation of the interface NHibernate.Persister.IClassPersister that implements per-
sistence via, for example, stored procedure calls, serialization to flat files or LDAP. See NHibern-

Basic O/R Mapping

NHibernate 5.1 35

ate.DomainModel.CustomPersister for a simple example (of "persistence" to a Hashtable).

Note that the dynamic-update and dynamic-insert settings are not inherited by subclasses and so may also be
specified on the <subclass> or <joined-subclass> elements. These settings may increase performance in
some cases, but might actually decrease performance in others. Use judiciously.

Use of select-before-update will usually decrease performance. It is very useful to prevent a database update
trigger being called unnecessarily.

If you enable dynamic-update, you will have a choice of optimistic locking strategies:

• version check the version/timestamp columns

• all check all columns

• dirty check the changed columns

• none do not use optimistic locking

We very strongly recommend that you use version/timestamp columns for optimistic locking with NHibernate.
This is the optimal strategy with respect to performance and is the only strategy that correctly handles modific-
ations made outside of the session (ie. when ISession.Update() is used). Keep in mind that a version or
timestamp property should never be null, no matter what unsaved-value strategy, or an instance will be detec-
ted as transient.

Beginning with NHibernate 1.2.0, version numbers start with 1, not 0 as in previous versions. This was done to
allow using 0 as unsaved-value for the version property.

5.1.4. subselect

An alternative to mapping a class to table or view columns is to map a query. For that, we use the <subselect>

element, which is mutually exclusive with <subclass>, <joined-subclass> and <union-subclass>. The con-
tent of the subselect element is a SQL query:

<subselect>
<![CDATA[
SELECT cat.ID, cat.NAME, cat.SEX, cat.MATE FROM cat
]]>

</subselect>

Usually, when mapping a query using subselect you will want to mark the class as not mutable (mut-
able="false"), unless you specify custom SQL for performing the UPDATE, DELETE and INSERT opera-
tions.

Also, it makes sense to force synchronization of the tables affected by the query, using one or more
<synchronize> entries:

<subselect>
<![CDATA[
SELECT cat.ID, cat.NAME, cat.SEX, cat.MATE FROM cat
]]>

</subselect>
<syncronize table="cat"/>

You then still have to declare the class id and properties.

Basic O/R Mapping

NHibernate 5.1 36

5.1.5. id

Mapped classes must declare the primary key column of the database table. Most classes will also have a prop-
erty holding the unique identifier of an instance. The <id> element defines the mapping from that property to
the primary key column.

<id
name="PropertyName" (1)
type="typename" (2)
column="column_name" (3)
unsaved-value="any|none|null|id_value" (4)
access="field|property|nosetter|ClassName(5)">

<generator class="generatorClass"/>
</id>

(1) name (optional): The name of the identifier property.
(2) type (optional): A name that indicates the NHibernate type.
(3) column (optional - defaults to the property name): The name of the primary key column.
(4) unsaved-value (optional - defaults to a "sensible" value): An identifier property value that indicates that

an instance is newly instantiated (unsaved), distinguishing it from transient instances that were saved or
loaded in a previous session.

(5) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

If the name attribute is missing, it is assumed that the class has no identifier property.

The unsaved-value attribute is almost never needed in NHibernate 1.0.

There is an alternative <composite-id> declaration to allow access to legacy data with composite keys. We
strongly discourage its use for anything else.

5.1.5.1. generator

The required generator names a .NET class used to generate unique identifiers for instances of the persistent
class.

The generator can be declared using the <generator> child element. If any parameters are required to configure
or initialize the generator instance, they are passed using <param> elements.

<id name="Id" type="Int64" column="uid" unsaved-value="0">
<generator class="NHibernate.Id.TableHiLoGenerator">

<param name="table">uid_table</param>
<param name="column">next_hi_value_column</param>

</generator>
</id>

If no parameters are required, the generator can be declared using a generator attribute directly on the <id>

element, as follows:

<id name="Id" type="Int64" column="uid" unsaved-value="0" generator="native" />

All generators implement the interface NHibernate.Id.IIdentifierGenerator. This is a very simple inter-
face; some applications may choose to provide their own specialized implementations. However, NHibernate
provides a range of built-in implementations. There are shortcut names for the built-in generators:

Basic O/R Mapping

NHibernate 5.1 37

increment

generates identifiers of any integral type that are unique only when no other process is inserting data into
the same table. Do not use in a cluster.

identity

supports identity columns in DB2, MySQL, MS SQL Server and Sybase. The identifier returned by the
database is converted to the property type using Convert.ChangeType. Any integral property type is thus
supported.

sequence

uses a sequence in DB2, PostgreSQL, Oracle or a generator in Firebird. The identifier returned by the data-
base is converted to the property type using Convert.ChangeType. Any integral property type is thus sup-
ported.

hilo

uses a hi/lo algorithm to efficiently generate identifiers of any integral type, given a table and column (by
default hibernate_unique_key and next_hi respectively) as a source of hi values. The hi/lo algorithm
generates identifiers that are unique only for a particular database. Do not use this generator with a user-
supplied connection.

You can use the "where" parameter to specify the row to use in a table. This is useful if you want to use a
single table for your identifiers, with different rows for each table.

seqhilo

uses a hi/lo algorithm to efficiently generate identifiers of any integral type, given a named database se-
quence.

uuid.hex

uses System.Guid and its ToString(string format) method to generate identifiers of type string. The
length of the string returned depends on the configured format.

uuid.string

uses a new System.Guid to create a byte[] that is converted to a string.

guid

uses a new System.Guid as the identifier.

guid.comb

uses the algorithm to generate a new System.Guid described by Jimmy Nilsson in this article
[https://www.informit.com/articles/article.aspx?p=25862].

native

picks identity, sequence or hilo depending upon the capabilities of the underlying database.

assigned

lets the application to assign an identifier to the object before Save() is called.

foreign

uses the identifier of another associated object. Usually used in conjunction with a <one-to-one> primary
key association.

5.1.5.2. Hi/Lo Algorithm

The hilo and seqhilo generators provide two alternate implementations of the hi/lo algorithm, a favorite ap-

Basic O/R Mapping

NHibernate 5.1 38

https://www.informit.com/articles/article.aspx?p=25862

proach to identifier generation. The first implementation requires a "special" database table to hold the next
available "hi" value. The second uses an Oracle-style sequence (where supported).

<id name="Id" type="Int64" column="cat_id">
<generator class="hilo">

<param name="table">hi_value</param>
<param name="column">next_value</param>
<param name="max_lo">100</param>

</generator>
</id>

<id name="Id" type="Int64" column="cat_id">
<generator class="seqhilo">

<param name="sequence">hi_value</param>
<param name="max_lo">100</param>

</generator>
</id>

Unfortunately, you can't use hilo when supplying your own DbConnection to NHibernate. NHibernate must be
able to fetch the "hi" value in a new transaction.

5.1.5.3. UUID Hex Algorithm

<id name="Id" type="String" column="cat_id">
<generator class="uuid.hex">

<param name="format">format_value</param>
<param name="separator">separator_value</param>

</generator>
</id>

The UUID is generated by calling Guid.NewGuid().ToString(format). The valid values for format are de-
scribed in the MSDN documentation. The default separator is - and should rarely be modified. The format

determines if the configured separator can replace the default separator used by the format.

5.1.5.4. UUID String Algorithm

The UUID is generated by calling Guid.NewGuid().ToByteArray() and then converting the byte[] into a
char[]. The char[] is returned as a String consisting of 16 characters.

5.1.5.5. GUID Algorithms

The guid identifier is generated by calling Guid.NewGuid(). To address some of the performance concerns with
using Guids as primary keys, foreign keys, and as part of indexes with MS SQL the guid.comb can be used.
The benefit of using the guid.comb with other databases that support GUIDs has not been measured.

5.1.5.6. Identity columns and Sequences

For databases which support identity columns (DB2, MySQL, Sybase, MS SQL), you may use identity key
generation. For databases that support sequences (DB2, Oracle, PostgreSQL, Interbase, McKoi, SAP DB) you
may use sequence style key generation. Both these strategies require two SQL queries to insert a new object.

<id name="Id" type="Int64" column="uid">
<generator class="sequence">

<param name="sequence">uid_sequence</param>
</generator>

</id>

<id name="Id" type="Int64" column="uid" unsaved-value="0">
<generator class="identity"/>

Basic O/R Mapping

NHibernate 5.1 39

</id>

For cross-platform development, the native strategy will choose from the identity, sequence and hilo

strategies, dependent upon the capabilities of the underlying database.

5.1.5.7. Assigned Identifiers

If you want the application to assign identifiers (as opposed to having NHibernate generate them), you may use
the assigned generator. This special generator will use the identifier value already assigned to the object's iden-
tifier property. Be very careful when using this feature to assign keys with business meaning (almost always a
terrible design decision).

Due to its inherent nature, entities that use this generator cannot be saved via the ISession's SaveOrUpdate()
method. Instead you have to explicitly specify to NHibernate if the object should be saved or updated by calling
either the Save() or Update() method of the ISession.

5.1.5.8. Enhanced identifier generators

Starting with NHibernate release 3.3.0, there are 2 new generators which represent a re-thinking of 2 different
aspects of identifier generation. The first aspect is database portability; the second is optimization. Optimization
means that you do not have to query the database for every request for a new identifier value. These two new
generators are intended to take the place of some of the named generators described above, starting in 3.3.x.
However, they are included in the current releases and can be referenced by FQN.

The first of these new generators is NHibernate.Id.Enhanced.SequenceStyleGenerator (short name en-

hanced-sequence) which is intended, firstly, as a replacement for the sequence generator and, secondly, as a
better portability generator than native. This is because native generally chooses between identity and se-

quence which have largely different semantics that can cause subtle issues in applications eyeing portability.
NHibernate.Id.Enhanced.SequenceStyleGenerator, however, achieves portability in a different manner. It
chooses between a table or a sequence in the database to store its incrementing values, depending on the capab-
ilities of the dialect being used. The difference between this and native is that table-based and sequence-based
storage have the same exact semantic. In fact, sequences are exactly what NHibernate tries to emulate with its
table-based generators. This generator has a number of configuration parameters:

• sequence_name (optional, defaults to hibernate_sequence): the name of the sequence or table to be used.
• initial_value (optional, defaults to 1): the initial value to be retrieved from the sequence/table. In se-

quence creation terms, this is analogous to the clause typically named "STARTS WITH".
• increment_size (optional - defaults to 1): the value by which subsequent calls to the sequence/table should

differ. In sequence creation terms, this is analogous to the clause typically named "INCREMENT BY".
• force_table_use (optional - defaults to false): should we force the use of a table as the backing structure

even though the dialect might support sequence?
• value_column (optional - defaults to next_val): only relevant for table structures, it is the name of the

column on the table which is used to hold the value.
• prefer_sequence_per_entity (optional - defaults to false): should we create separate sequence for each

entity that share current generator based on its name?
• sequence_per_entity_suffix (optional - defaults to _SEQ): suffix added to the name of a dedicated se-

quence.
• optimizer (optional - defaults to none): See Section 5.1.5.8.1, “Identifier generator optimization”

The second of these new generators is NHibernate.Id.Enhanced.TableGenerator (short name enhanced-ta-

ble), which is intended, firstly, as a replacement for the table generator, even though it actually functions
much more like org.hibernate.id.MultipleHiLoPerTableGenerator (not available in NHibernate), and
secondly, as a re-implementation of org.hibernate.id.MultipleHiLoPerTableGenerator (not available in

Basic O/R Mapping

NHibernate 5.1 40

NHibernate) that utilizes the notion of pluggable optimizers. Essentially this generator defines a table capable
of holding a number of different increment values simultaneously by using multiple distinctly keyed rows. This
generator has a number of configuration parameters:

• table_name (optional - defaults to hibernate_sequences): the name of the table to be used.
• value_column_name (optional - defaults to next_val): the name of the column on the table that is used to

hold the value.
• segment_column_name (optional - defaults to sequence_name): the name of the column on the table that is

used to hold the "segment key". This is the value which identifies which increment value to use.
• segment_value (optional - defaults to default): The "segment key" value for the segment from which we

want to pull increment values for this generator.
• segment_value_length (optional - defaults to 255): Used for schema generation; the column size to create

this segment key column.
• initial_value (optional - defaults to 1): The initial value to be retrieved from the table.
• increment_size (optional - defaults to 1): The value by which subsequent calls to the table should differ.
• optimizer (optional - defaults to ??): See Section 5.1.5.8.1, “Identifier generator optimization”.

5.1.5.8.1. Identifier generator optimization

For identifier generators that store values in the database, it is inefficient for them to hit the database on each
and every call to generate a new identifier value. Instead, you can group a bunch of them in memory and only
hit the database when you have exhausted your in-memory value group. This is the role of the pluggable optim-
izers. Currently only the two enhanced generators (Section 5.1.5.8, “Enhanced identifier generators” support
this operation.

• none (generally this is the default if no optimizer was specified): this will not perform any optimizations
and hit the database for each and every request.

• hilo: applies a hi/lo algorithm around the database retrieved values. The values from the database for this
optimizer are expected to be sequential. The values retrieved from the database structure for this optimizer
indicates the "group number". The increment_size is multiplied by that value in memory to define a group
"hi value".

• pooled: as with the case of hilo, this optimizer attempts to minimize the number of hits to the database.
Here, however, we simply store the starting value for the "next group" into the database structure rather
than a sequential value in combination with an in-memory grouping algorithm. Here, increment_size

refers to the values coming from the database.
• pooled-lo: similar to pooled, except that it's the starting value of the "current group" that is stored into the

database structure. Here, increment_size refers to the values coming from the database.

5.1.6. composite-id

<composite-id
name="PropertyName"
class="ClassName"
unsaved-value="any|none"
access="field|property|nosetter|ClassName">

<key-property name="PropertyName" type="typename" column="column_name"/>
<key-many-to-one name="PropertyName class="ClassName" column="column_name"/>
......

</composite-id>

For a table with a composite key, you may map multiple properties of the class as identifier properties. The
<composite-id> element accepts <key-property> property mappings and <key-many-to-one> mappings as
child elements.

<composite-id>

Basic O/R Mapping

NHibernate 5.1 41

<key-property name="MedicareNumber"/>
<key-property name="Dependent"/>

</composite-id>

Your persistent class must override Equals() and GetHashCode() to implement composite identifier equality. It
must also be marked with the Serializable attribute.

Unfortunately, this approach to composite identifiers means that a persistent object is its own identifier. There
is no convenient "handle" other than the object itself. You must instantiate an instance of the persistent class it-
self and populate its identifier properties before you can Load() the persistent state associated with a composite
key. We will describe a much more convenient approach where the composite identifier is implemented as a
separate class in Section 7.4, “Components as composite identifiers”. The attributes described below apply only
to this alternative approach:

• name (optional, required for this approach): A property of component type that holds the composite identifi-
er (see next section).

• access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

• class (optional - defaults to the property type determined by reflection): The component class used as a
composite identifier (see next section).

5.1.7. discriminator

The <discriminator> element is required for polymorphic persistence using the table-per-class-hierarchy map-
ping strategy and declares a discriminator column of the table. The discriminator column contains marker val-
ues that tell the persistence layer what subclass to instantiate for a particular row. A restricted set of types may
be used: String, Char, Int32, Byte, Short, Boolean, YesNo, TrueFalse.

<discriminator
column="discriminator_column" (1)
type="discriminator_type" (2)
force="true|false" (3)
insert="true|false" (4)
formula="arbitrary SQL expressi(5)on"

/>

(1) column (optional - defaults to class) the name of the discriminator column.
(2) type (optional - defaults to String) a name that indicates the NHibernate type
(3) force (optional - defaults to false) "force" NHibernate to specify allowed discriminator values even

when retrieving all instances of the root class.
(4) insert (optional - defaults to true) set this to false if your discriminator column is also part of a mapped

composite identifier.
(5) formula (optional) an arbitrary SQL expression that is executed when a type has to be evaluated. Allows

content-based discrimination.

Actual values of the discriminator column are specified by the discriminator-value attribute of the <class>

and <subclass> elements.

The force attribute is (only) useful if the table contains rows with "extra" discriminator values that are not
mapped to a persistent class. This will not usually be the case.

Using the formula attribute you can declare an arbitrary SQL expression that will be used to evaluate the type
of a row:

<discriminator
formula="case when CLASS_TYPE in ('a', 'b', 'c') then 0 else 1 end"

Basic O/R Mapping

NHibernate 5.1 42

type="Int32"/>

5.1.8. version (optional)

The <version> element is optional and indicates that the table contains versioned data. This is particularly use-
ful if you plan to use long transactions (see below).

<version
column="version_column" (1)
name="PropertyName" (2)
type="typename" (3)
access="field|property|nosetter|ClassName" (4)
unsaved-value="null|negative|undefined|value" (5)
generated="never|always" (6)

/>

(1) column (optional - defaults to the property name): The name of the column holding the version number.
(2) name: The name of a property of the persistent class.
(3) type (optional - defaults to Int32): The type of the version number.
(4) access (optional - defaults to property): The strategy NHibernate should use for accessing the property

value.
(5) unsaved-value (optional - defaults to a "sensible" value): A version property value that indicates that an

instance is newly instantiated (unsaved), distinguishing it from transient instances that were saved or
loaded in a previous session. (undefined specifies that the identifier property value should be used.)

(6) generated (optional - defaults to never): Specifies that this version property value is actually generated
by the database. See the discussion of Section 5.5, “Generated Properties”.

Version may be of type Int64, Int32, Int16, Ticks, Timestamp, TimeSpan, datetimeoffset, ... (or their nul-
lable counterparts in .NET 2.0). Any type implementing IVersionType is usable as a version.

5.1.9. timestamp (optional)

The optional <timestamp> element indicates that the table contains timestamped data. This is intended as an al-
ternative to versioning. Timestamps are by nature a less safe implementation of optimistic locking. However,
sometimes the application might use the timestamps in other ways.

<timestamp
column="timestamp_column" (1)
name="PropertyName" (2)
access="field|property|nosetter|Clas(3)sName"
unsaved-value="null|undefined|value"(4)
generated="never|always" (5)

/>

(1) column (optional - defaults to the property name): The name of a column holding the timestamp.
(2) name: The name of a property of .NET type DateTime of the persistent class.
(3) access (optional - defaults to property): The strategy NHibernate should use for accessing the property

value.
(4) unsaved-value (optional - defaults to null): A timestamp property value that indicates that an instance is

newly instantiated (unsaved), distinguishing it from transient instances that were saved or loaded in a pre-
vious session. (undefined specifies that the identifier property value should be used.)

(5) generated (optional - defaults to never): Specifies that this timestamp property value is actually gener-
ated by the database. See the discussion of Section 5.5, “Generated Properties”.

Note that <timestamp> is equivalent to <version type="timestamp">.

Basic O/R Mapping

NHibernate 5.1 43

5.1.10. property

The <property> element declares a persistent property of the class.

<property
name="propertyName" (1)
column="column_name" (2)
type="typename" (3)
update="true|false" (4)
insert="true|false" (4)
formula="arbitrary SQL expression" (5)
access="field|property|ClassName" (6)
optimistic-lock="true|false" (7)
generated="never|insert|always" (8)
lazy="true|false" (9)

/>

(1) name: the name of the property of your class.
(2) column (optional - defaults to the property name): the name of the mapped database table column.
(3) type (optional): a name that indicates the NHibernate type.
(4) update, insert (optional - defaults to true) : specifies that the mapped columns should be included in

SQL UPDATE and/or INSERT statements. Setting both to false allows a pure "derived" property whose
value is initialized from some other property that maps to the same column(s) or by a trigger or other ap-
plication.

(5) formula (optional): an SQL expression that defines the value for a computed property. Computed proper-
ties do not have a column mapping of their own.

(6) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

(7) optimistic-lock (optional - defaults to true): Specifies that updates to this property do or do not require
acquisition of the optimistic lock. In other words, determines if a version increment should occur when
this property is dirty.

(8) generated (optional - defaults to never): Specifies that this property value is actually generated by the
database. See the discussion of Section 5.5, “Generated Properties”.

(9) lazy (optional - defaults to false): Specifies that this property is lazy. A lazy property is not loaded when
the object is initially loaded, unless the fetch mode has been overridden in a specific query. Values for
lazy properties are loaded when any lazy property of the object is accessed.

typename could be:

1. The name of a NHibernate basic type (eg. Int32, String, Char, DateTime, Timestamp, Single,

Byte[], Object, ...).
2. The name of a .NET type with a default basic type (eg. System.Int16, System.Single, System.Char,

System.String, System.DateTime, System.Byte[], ...).
3. The name of an enumeration type (eg. Eg.Color, Eg).
4. The name of a serializable .NET type.
5. The class name of a custom type (eg. Illflow.Type.MyCustomType).

Note that you have to specify full assembly-qualified names for all except basic NHibernate types (unless you
set assembly and/or namespace attributes of the <hibernate-mapping> element).

NHibernate supports .NET 2.0 Nullable types. These types are mostly treated the same as plain non-Nullable
types internally. For example, a property of type Nullable<Int32> can be mapped using type="Int32" or
type="System.Int32".

If you do not specify a type, NHibernate will use reflection upon the named property to take a guess at the cor-
rect NHibernate type. NHibernate will try to interpret the name of the return class of the property getter using

Basic O/R Mapping

NHibernate 5.1 44

rules 2, 3, 4 in that order. However, this is not always enough. In certain cases you will still need the type at-
tribute. (For example, to distinguish between NHibernateUtil.DateTime and NHibernateUtil.Timestamp, or
to specify a custom type.)

See also Section 5.2, “NHibernate Types”.

The access attribute lets you control how NHibernate will access the value of the property at runtime. The
value of the access attribute should be text formatted as access-strategy.naming-strategy. The
.naming-strategy is not always required.

Table 5.1. Access Strategies

Access Strategy Name Description

property
The default implementation. NHibernate uses the get/
set accessors of the property. No naming strategy
should be used with this access strategy because the
value of the name attribute is the name of the prop-
erty.

field
NHibernate will access the field directly. NHibernate
uses the value of the name attribute as the name of the
field. This can be used when a property's getter and
setter contain extra actions that you don't want to oc-
cur when NHibernate is populating or reading the ob-
ject. If you want the name of the property and not the
field to be what the consumers of your API use with
HQL, then a naming strategy is needed.

nosetter
NHibernate will access the field directly when setting
the value and will use the Property when getting the
value. This can be used when a property only exposes
a get accessor because the consumers of your API
can't change the value directly. A naming strategy is
required because NHibernate uses the value of the
name attribute as the property name and needs to be
told what the name of the field is.

ClassName
If NHibernate's built in access strategies are not what
is needed for your situation then you can build your
own by implementing the interface NHibern-

ate.Property.IPropertyAccessor. The value of the
access attribute should be an assembly-qualified
name that can be loaded with Activat-

or.CreateInstance(string assemblyQualified-

Name).

Table 5.2. Naming Strategies

Basic O/R Mapping

NHibernate 5.1 45

Naming Strategy Name Description

camelcase
The name attribute is converted to camel case to find
the field. <property name="FooBar" ... > uses the
field fooBar.

camelcase-underscore
The name attribute is converted to camel case and pre-
fixed with an underscore to find the field. <property
name="FooBar" ... > uses the field _fooBar.

camelcase-m-underscore
The name attribute is converted to camel case and pre-
fixed with the character m and an underscore to find
the field. <property name="FooBar" ... > uses the
field m_fooBar.

lowercase
The name attribute is converted to lower case to find
the Field. <property name="FooBar" ... > uses the
field foobar.

lowercase-underscore
The name attribute is converted to lower case and pre-
fixed with an underscore to find the Field. <property
name="FooBar" ... > uses the field _foobar.

pascalcase-underscore
The name attribute is prefixed with an underscore to
find the field. <property name="FooBar" ... > uses
the field _FooBar.

pascalcase-m
The name attribute is prefixed with the character m to
find the field. <property name="FooBar" ... > uses
the field mFooBar.

pascalcase-m-underscore
The name attribute is prefixed with the character m and
an underscore to find the field. <property

name="FooBar" ... > uses the field m_FooBar.

5.1.11. many-to-one

An ordinary association to another persistent class is declared using a many-to-one element. The relational
model is a many-to-one association. (It's really just an object reference.)

<many-to-one
name="PropertyName" (1)
column="column_name" (2)
class="ClassName" (3)
cascade="all|none|save-update|delete|delete-orphan|(4)all-delete-orphan"
fetch="join|select" (5)
update="true|false" (6)
insert="true|false" (6)
property-ref="PropertyNameFromAssociatedClass" (7)
access="field|property|nosetter|ClassName" (8)
unique="true|false" (9)

Basic O/R Mapping

NHibernate 5.1 46

optimistic-lock="true|false" (10)
not-found="ignore|exception" (11)

/>

(1) name: The name of the property.
(2) column (optional): The name of the column.
(3) class (optional - defaults to the property type determined by reflection): The name of the associated

class.
(4) cascade (optional): Specifies which operations should be cascaded from the parent object to the associ-

ated object.
(5) fetch (optional - defaults to select): Chooses between outer-join fetching or sequential select fetching.
(6) update, insert (optional - defaults to true) specifies that the mapped columns should be included in

SQL UPDATE and/or INSERT statements. Setting both to false allows a pure "derived" association whose
value is initialized from some other property that maps to the same column(s) or by a trigger or other ap-
plication.

(7) property-ref: (optional) The name of a property of the associated class that is joined to this foreign key.
If not specified, the primary key of the associated class is used.

(8) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

(9) unique (optional): Enable the DDL generation of a unique constraint for the foreign-key column.
(10) optimistic-lock (optional - defaults to true): Specifies that updates to this property do or do not require

acquisition of the optimistic lock. In other words, determines if a version increment should occur when
this property is dirty.

(11) not-found (optional - defaults to exception): Specifies how foreign keys that reference missing rows will
be handled: ignore will treat a missing row as a null association.

The cascade attribute permits the following values: all, save-update, delete, delete-orphan, all-de-

lete-orphan and none. Setting a value other than none will propagate certain operations to the associated
(child) object. See "Lifecycle Objects" below.

The fetch attribute accepts two different values:

• join Fetch the association using an outer join
• select Fetch the association using a separate query

A typical many-to-one declaration looks as simple as

<many-to-one name="product" class="Product" column="PRODUCT_ID"/>

The property-ref attribute should only be used for mapping legacy data where a foreign key refers to a unique
key of the associated table other than the primary key. This is an ugly relational model. For example, suppose
the Product class had a unique serial number, that is not the primary key. (The unique attribute controls
NHibernate's DDL generation with the SchemaExport tool.)

<property name="serialNumber" unique="true" type="string" column="SERIAL_NUMBER"/>

Then the mapping for OrderItem might use:

<many-to-one name="product" property-ref="serialNumber" column="PRODUCT_SERIAL_NUMBER"/>

This is certainly not encouraged, however.

5.1.12. one-to-one

Basic O/R Mapping

NHibernate 5.1 47

A one-to-one association to another persistent class is declared using a one-to-one element.

<one-to-one
name="PropertyName" (1)
class="ClassName" (2)
cascade="all|none|save-update|delete|delete-orphan|(3)all-delete-orphan"
constrained="true|false" (4)
fetch="join|select" (5)
property-ref="PropertyNameFromAssociatedClass" (6)
access="field|property|nosetter|ClassName" (7)

/>

(1) name: The name of the property.
(2) class (optional - defaults to the property type determined by reflection): The name of the associated

class.
(3) cascade (optional) specifies which operations should be cascaded from the parent object to the associated

object.
(4) constrained (optional) specifies that a foreign key constraint on the primary key of the mapped table ref-

erences the table of the associated class. This option affects the order in which Save() and Delete() are
cascaded (and is also used by the schema export tool).

(5) fetch (optional - defaults to select): Chooses between outer-join fetching or sequential select fetching.
(6) property-ref: (optional) The name of a property of the associated class that is joined to the primary key

of this class. If not specified, the primary key of the associated class is used.
(7) access (optional - defaults to property): The strategy NHibernate should use for accessing the property

value.

There are two varieties of one-to-one association:

• primary key associations

• unique foreign key associations

Primary key associations don't need an extra table column; if two rows are related by the association then the
two table rows share the same primary key value. So if you want two objects to be related by a primary key as-
sociation, you must make sure that they are assigned the same identifier value!

For a primary key association, add the following mappings to Employee and Person, respectively.

<one-to-one name="Person" class="Person"/>

<one-to-one name="Employee" class="Employee" constrained="true"/>

Now we must ensure that the primary keys of related rows in the PERSON and EMPLOYEE tables are equal.
We use a special NHibernate identifier generation strategy called foreign:

<class name="Person" table="PERSON">
<id name="Id" column="PERSON_ID">

<generator class="foreign">
<param name="property">Employee</param>

</generator>
</id>
...
<one-to-one name="Employee"

class="Employee"
constrained="true"/>

</class>

Basic O/R Mapping

NHibernate 5.1 48

A newly saved instance of Person is then assigned the same primary key value as the Employee instance re-
ferred with the Employee property of that Person.

Alternatively, a foreign key with a unique constraint, from Employee to Person, may be expressed as:

<many-to-one name="Person" class="Person" column="PERSON_ID" unique="true"/>

And this association may be made bidirectional by adding the following to the Person mapping:

<one-to-one name="Employee" class="Employee" property-ref="Person"/>

5.1.13. natural-id

<natural-id mutable="true|false"/>
<property ... />
<many-to-one ... />
......

</natural-id>

Even though we recommend the use of surrogate keys as primary keys, you should still try to identify natural
keys for all entities. A natural key is a property or combination of properties that is unique and non-null. If it is
also immutable, even better. Map the properties of the natural key inside the <natural-id> element. NHibern-
ate will generate the necessary unique key and nullability constraints, and your mapping will be more self-
documenting.

We strongly recommend that you implement Equals() and GetHashCode() to compare the natural key proper-
ties of the entity.

This mapping is not intended for use with entities with natural primary keys.

• mutable (optional, defaults to false): By default, natural identifier properties as assumed to be immutable
(constant).

5.1.14. component, dynamic-component

The <component> element maps properties of a child object to columns of the table of a parent class. Compon-
ents may, in turn, declare their own properties, components or collections. See "Components" below.

<component
name="PropertyName" (1)
class="ClassName" (2)
insert="true|false" (3)
upate="true|false" (4)
access="field|property|nosetter|ClassName" (5)
optimistic-lock="true|false"> (6)

<property/>
<many-to-one />
........

</component>

(1) name: The name of the property.
(2) class (optional - defaults to the property type determined by reflection): The name of the component

(child) class.
(3) insert: Do the mapped columns appear in SQL INSERTs?
(4) update: Do the mapped columns appear in SQL UPDATEs?

Basic O/R Mapping

NHibernate 5.1 49

(5) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

(6) optimistic-lock (optional - defaults to true): Specifies that updates to this component do or do not re-
quire acquisition of the optimistic lock. In other words, determines if a version increment should occur
when this property is dirty.

The child <property> tags map properties of the child class to table columns.

The <component> element allows a <parent> sub-element that maps a property of the component class as a ref-
erence back to the containing entity.

The <dynamic-component> element allows an IDictionary to be mapped as a component, where the property
names refer to keys of the dictionary.

5.1.15. properties

The <properties> element allows the definition of a named, logical grouping of the properties of a class. The
most important use of the construct is that it allows a combination of properties to be the target of a property-

ref. It is also a convenient way to define a multi-column unique constraint. For example:

<properties
name="logicalName" (1)
insert="true|false" (2)
update="true|false" (3)
optimistic-lock="true|false" (4)
unique="true|false"> (5)

<property .../>
<many-to-one .../>
........

</properties>

(1) name: the logical name of the grouping. It is not an actual property name.
(2) insert: do the mapped columns appear in SQL INSERTs?
(3) update: do the mapped columns appear in SQL UPDATEs?
(4) optimistic-lock (optional - defaults to true): specifies that updates to these properties either do or do

not require acquisition of the optimistic lock. It determines if a version increment should occur when these
properties are dirty.

(5) unique (optional - defaults to false): specifies that a unique constraint exists upon all mapped columns of
the component.

For example, if we have the following <properties> mapping:

<class name="Person">
<id name="personNumber" />
<properties name="name" unique="true" update="false">

<property name="firstName" />
<property name="lastName" />
<property name="initial" />

</properties>
</class>

You might have some legacy data association that refers to this unique key of the Person table, instead of to the
primary key:

<many-to-one name="owner" class="Person" property-ref="name">
<column name="firstName" />
<column name="lastName" />
<column name="initial" />

Basic O/R Mapping

NHibernate 5.1 50

</many-to-one>

The use of this outside the context of mapping legacy data is not recommended.

5.1.16. subclass

Finally, polymorphic persistence requires the declaration of each subclass of the root persistent class. For the
(recommended) table-per-class-hierarchy mapping strategy, the <subclass> declaration is used.

<subclass
name="ClassName" (1)
discriminator-value="discriminator_value" (2)
proxy="ProxyInterface" (3)
lazy="true|false" (4)
dynamic-update="true|false"
dynamic-insert="true|false">

<property />
<properties />
.....

</subclass>

(1) name: The fully qualified .NET class name of the subclass, including its assembly name.
(2) discriminator-value (optional - defaults to the class name): A value that distinguishes individual sub-

classes.
(3) proxy (optional): Specifies a class or interface to use for lazy initializing proxies.
(4) lazy (optional, defaults to true): Setting lazy="false" disables the use of lazy fetching.

Each subclass should declare its own persistent properties and subclasses. <version> and <id> properties are
assumed to be inherited from the root class. Each subclass in a hierarchy must define a unique discriminator-

value. If none is specified, the fully qualified .NET class name is used.

For information about inheritance mappings, see Chapter 8, Inheritance Mapping.

5.1.17. joined-subclass

Alternatively, a subclass that is persisted to its own table (table-per-subclass mapping strategy) is declared us-
ing a <joined-subclass> element.

<joined-subclass
name="ClassName" (1)
proxy="ProxyInterface" (2)
lazy="true|false" (3)
dynamic-update="true|false"
dynamic-insert="true|false">

<key >

<property />
<properties />
.....

</joined-subclass>

(1) name: The fully qualified class name of the subclass.
(2) proxy (optional): Specifies a class or interface to use for lazy initializing proxies.
(3) lazy (optional): Setting lazy="true" is a shortcut equivalent to specifying the name of the class itself as

the proxy interface.

Basic O/R Mapping

NHibernate 5.1 51

No discriminator column is required for this mapping strategy. Each subclass must, however, declare a table
column holding the object identifier using the <key> element. The mapping at the start of the chapter would be
re-written as:

<?xml version="1.0"?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" assembly="Eg"

namespace="Eg">

<class name="Cat" table="CATS">
<id name="Id" column="uid" type="Int64">

<generator class="hilo"/>
</id>
<property name="BirthDate" type="Date"/>
<property name="Color" not-null="true"/>
<property name="Sex" not-null="true"/>
<property name="Weight"/>
<many-to-one name="Mate"/>
<set name="Kittens">

<key column="MOTHER"/>
<one-to-many class="Cat"/>

</set>
<joined-subclass name="DomesticCat" table="DOMESTIC_CATS">

<key column="CAT"/>
<property name="Name" type="String"/>

</joined-subclass>
</class>

<class name="Dog">
<!-- mapping for Dog could go here -->

</class>

</hibernate-mapping>

For information about inheritance mappings, see Chapter 8, Inheritance Mapping.

5.1.18. union-subclass

A third option is to map only the concrete classes of an inheritance hierarchy to tables, (the table-
per-concrete-class strategy) where each table defines all persistent state of the class, including inherited state. In
NHibernate, it is not absolutely necessary to explicitly map such inheritance hierarchies. You can simply map
each class with a separate <class> declaration. However, if you wish use polymorphic associations (e.g. an as-
sociation to the superclass of your hierarchy), you need to use the <union-subclass> mapping.

<union-subclass
name="ClassName" (1)
table="tablename" (2)
proxy="ProxyInterface" (3)
lazy="true|false" (4)
dynamic-update="true|false"
dynamic-insert="true|false"
schema="schema"
catalog="catalog"
extends="SuperclassName"
abstract="true|false"
persister="ClassName"
subselect="SQL expression"
entity-name="EntityName"
node="element-name">

<property />
<properties />
.....

</union-subclass>

Basic O/R Mapping

NHibernate 5.1 52

(1) name: The fully qualified class name of the subclass.
(2) table: The name of the subclass table.
(3) proxy (optional): Specifies a class or interface to use for lazy initializing proxies.
(4) lazy (optional, defaults to true): Setting lazy="false" disables the use of lazy fetching.

No discriminator column or key column is required for this mapping strategy.

For information about inheritance mappings, see Chapter 8, Inheritance Mapping.

5.1.19. join

Using the <join> element, it is possible to map properties of one class to several tables, when there's a 1-to-1
relationship between the tables.

<join
table="tablename" (1)
schema="owner" (2)
fetch="join|select" (3)
inverse="true|false" (4)
optional="true|false"> (5)

<key ... />

<property ... />
...

</join>

(1) table: The name of the joined table.
(2) schema (optional): Override the schema name specified by the root <hibernate-mapping> element.
(3) fetch (optional - defaults to join): If set to join, the default, NHibernate will use an inner join to retrieve

a <join> defined by a class or its superclasses and an outer join for a <join> defined by a subclass. If set
to select then NHibernate will use a sequential select for a <join> defined on a subclass, which will be
issued only if a row turns out to represent an instance of the subclass. Inner joins will still be used to re-
trieve a <join> defined by the class and its superclasses.

(4) inverse (optional - defaults to false): If enabled, NHibernate will not try to insert or update the proper-
ties defined by this join.

(5) optional (optional - defaults to false): If enabled, NHibernate will insert a row only if the properties
defined by this join are non-null and will always use an outer join to retrieve the properties.

For example, the address information for a person can be mapped to a separate table (while preserving value
type semantics for all properties):

<class name="Person"
table="PERSON">

<id name="id" column="PERSON_ID">...</id>

<join table="ADDRESS">
<key column="ADDRESS_ID"/>
<property name="address"/>
<property name="zip"/>
<property name="country"/>

</join>
...

This feature is often only useful for legacy data models, we recommend fewer tables than classes and a fine-
grained domain model. However, it is useful for switching between inheritance mapping strategies in a single
hierarchy, as explained later.

Basic O/R Mapping

NHibernate 5.1 53

5.1.20. map, set, list, bag

Collections are discussed later.

5.1.21. import

Suppose your application has two persistent classes with the same name, and you don't want to specify the fully
qualified name in NHibernate queries. Classes may be "imported" explicitly, rather than relying upon auto-

import="true". You may even import classes and interfaces that are not explicitly mapped.

<import class="System.Object" rename="Universe"/>

<import
class="ClassName" (1)
rename="ShortName" (2)

/>

(1) class: The fully qualified class name of any .NET class, including its assembly name.
(2) rename (optional - defaults to the unqualified class name): A name that may be used in the query lan-

guage.

5.2. NHibernate Types

5.2.1. Entities and values

To understand the behaviour of various .NET language-level objects with respect to the persistence service, we
need to classify them into two groups:

An entity exists independently of any other objects holding references to the entity. Contrast this with the usual
.NET model where an unreferenced object is garbage collected. Entities must be explicitly saved and deleted
(except that saves and deletions may be cascaded from a parent entity to its children). This is different from the
ODMG model of object persistence by reachability - and corresponds more closely to how application objects
are usually used in large systems. Entities support circular and shared references. They may also be versioned.

An entity's persistent state consists of references to other entities and instances of value types. Values are prim-
itives, collections, components and certain immutable objects. Unlike entities, values (in particular collections
and components) are persisted and deleted by reachability. Since value objects (and primitives) are persisted
and deleted along with their containing entity they may not be independently versioned. Values have no inde-
pendent identity, so they cannot be shared by two entities or collections.

All NHibernate types except collections support null semantics if the .NET type is nullable (i.e. not derived
from System.ValueType).

Up until now, we've been using the term "persistent class" to refer to entities. We will continue to do that.
Strictly speaking, however, not all user-defined classes with persistent state are entities. A component is a user
defined class with value semantics.

5.2.2. Basic value types

The basic types may be roughly categorized into three groups - System.ValueType types, System.Object

types, and System.Object types for large objects. Just like Columns for System.ValueType types can handle

Basic O/R Mapping

NHibernate 5.1 54

null values only if the entity property is properly typed with a Nullable<T>. Otherwise null will be replaced
by the default value for the type when reading, and then will be overwritten by it when persisting the entity, po-
tentially leading to phantom updates.

Table 5.3. System.ValueType Mapping Types

NHibernate Type .NET Type Database Type Remarks

AnsiChar System.Char Db-

Type.AnsiStringFixedL

ength - 1 char

type="AnsiChar" must
be specified.

Boolean System.Boolean DbType.Boolean Default when no type at-
tribute specified.

Byte System.Byte DbType.Byte Default when no type at-
tribute specified.

Char System.Char Db-

Type.StringFixedLengt

h - 1 char

Default when no type at-
tribute specified.

Currency System.Decimal DbType.Currency type="Currency" must
be specified.

Date System.DateTime DbType.Date type="Date" must be
specified.

DateTime System.DateTime DbType.DateTime / Db-

Type.DateTime2(1)

Default when no type at-
tribute specified. Does no
longer ignore fractional
seconds since NHibernate
v5.0.

DateTimeNoMs System.DateTime DbType.DateTime / Db-

Type.DateTime2(1)

type="DateTimeNoMs"

must be specified. Ig-
nores fractional seconds.
Available since NHibern-
ate v5.0.

DateTime2 System.DateTime DbType.DateTime2 type="DateTime2" must
be specified. Obsolete
since NHibernate v5.0,
use DateTime instead.

DateTimeOffset System.DateTimeOffset DbType.DateTimeOffset Default when no type at-
tribute specified.

DbTimestamp System.DateTime DbType.DateTime / Db-

Type.DateTime2(1)

type="DbTimestamp"

must be specified. When
used as a version field,
uses the database's cur-
rent time retrieved in ded-
icated queries, rather than
the client's current time.

Decimal System.Decimal DbType.Decimal Default when no type at-
tribute specified.

Basic O/R Mapping

NHibernate 5.1 55

NHibernate Type .NET Type Database Type Remarks

Double System.Double DbType.Double Default when no type at-
tribute specified.

Guid System.Guid DbType.Guid Default when no type at-
tribute specified.

Int16 System.Int16 DbType.Int16 Default when no type at-
tribute specified.

Int32 System.Int32 DbType.Int32 Default when no type at-
tribute specified.

Int64 System.Int64 DbType.Int64 Default when no type at-
tribute specified.

LocalDateTime System.DateTime DbType.DateTime / Db-

Type.DateTime2(1)

type="LocalDateTime"

must be specified. En-
sures the DateTimeKind is
set to DateTime-

Kind.Local. Throws if
set with a date having an-
other kind. Does no
longer ignore fractional
seconds since NHibernate
v5.0.

LocalDateTimeNoMs System.DateTime DbType.DateTime / Db-

Type.DateTime2(1)

type="LocalDateTimeNo

Ms" must be specified.
Similar to LocalDateTime

but ignores fractional
seconds. Available since
NHibernate v5.0.

PersistentEnum A System.Enum The DbType for the under-
lying value.

Do not specify
type="PersistentEnum"

in the mapping. Instead
specify the Assembly
Qualified Name of the
Enum or let NHibernate
use Reflection to "guess"
the Type. The Underly-
ingType of the Enum is
used to determine the cor-
rect DbType.

SByte System.SByte DbType.SByte Default when no type at-
tribute specified.

Single System.Single DbType.Single Default when no type at-
tribute specified.

Ticks System.DateTime DbType.Int64 type="Ticks" must be
specified.

Time System.DateTime DbType.Time type="Time" must be
specified.

Basic O/R Mapping

NHibernate 5.1 56

NHibernate Type .NET Type Database Type Remarks

TimeAsTimeSpan System.TimeSpan DbType.Time type="TimeAsTimeSpan"

must be specified.

TimeSpan System.TimeSpan DbType.Int64 Default when no type at-
tribute specified.

Timestamp System.DateTime DbType.DateTime / Db-

Type.DateTime2(1)

Obsolete, its Timestamp

alias will be remapped to
DateTime in a future ver-
sion.

TrueFalse System.Boolean Db-

Type.AnsiStringFixedL

ength - 1 char either 'T'
or 'F'

type="TrueFalse" must
be specified.

UInt16 System.UInt16 DbType.UInt16 Default when no type at-
tribute specified.

UInt32 System.UInt32 DbType.UInt32 Default when no type at-
tribute specified.

UInt64 System.UInt64 DbType.UInt64 Default when no type at-
tribute specified.

UtcDateTime System.DateTime DbType.DateTime / Db-

Type.DateTime2(1)

Ensures the DateTime-

Kind is set to DateTime-

Kind.Utc. Throws if set
with a date having anoth-
er kind. Does no longer
ignore fractional seconds
since NHibernate v5.0.

UtcDateTimeNoMs System.DateTime DbType.DateTime / Db-

Type.DateTime2(1)

type="UtcDateTimeNoMs

" must be specified. Sim-
ilar to UtcDateTime but
ignores fractional
seconds. Available since
NHibernate v5.0.

YesNo System.Boolean Db-

Type.AnsiStringFixedL

ength - 1 char either 'Y'
or 'N'

type="YesNo" must be
specified.

(1) Since NHibernate v5.0 and if the dialect supports it, DbType.DateTime2 is used instead of Db-

Type.DateTime. This may be disabled by setting sql_types.keep_datetime to true.

Table 5.4. System.Object Mapping Types

NHibernate Type .NET Type Database Type Remarks

AnsiString System.String DbType.AnsiString type="AnsiString" must
be specified.

Basic O/R Mapping

NHibernate 5.1 57

NHibernate Type .NET Type Database Type Remarks

CultureInfo Sys-

tem.Globalization.Cul

tureInfo

DbType.String - 5 chars
for culture

Default when no type at-
tribute specified.

Binary System.Byte[] DbType.Binary Default when no type at-
tribute specified.

Type System.Type DbType.String holding
Assembly Qualified
Name.

Default when no type at-
tribute specified.

String System.String DbType.String Default when no type at-
tribute specified.

Uri System.Uri DbType.String Default when no type at-
tribute specified.

Table 5.5. Large Object Mapping Types

NHibernate Type .NET Type Database Type Remarks

StringClob System.String DbType.String type="StringClob" must
be specified. Entire field
is read into memory.

BinaryBlob System.Byte[] DbType.Binary type="BinaryBlob" must
be specified. Entire field
is read into memory.

Serializable Any System.Object that
is marked with Serializ-
ableAttribute.

DbType.Binary type="Serializable"

should be specified. This
is the fallback type if no
NHibernate Type can be
found for the Property.

XDoc Sys-

tem.Xml.Linq.XDocumen

t

DbType.Xml Default when no type at-
tribute specified. Entire
field is read into memory.

XmlDoc Sys-

tem.Xml.XmlDocument

DbType.Xml Default when no type at-
tribute specified. Entire
field is read into memory.

NHibernate supports some additional type names for compatibility with Java's Hibernate (useful for those com-
ing over from Hibernate or using some of the tools to generate hbm.xml files). A type="integer" or
type="int" will map to an Int32 NHibernate type, type="short" to an Int16 NHibernateType. To see all of
the conversions you can view the source of static constructor of the class NHibernate.Type.TypeFactory.

Default NHibernate types used when no type attribute is specified can be overridden by using the NHibern-

ate.Type.TypeFactory.RegisterType static method before configuring and building session factories.

5.2.3. Custom value types

Basic O/R Mapping

NHibernate 5.1 58

It is relatively easy for developers to create their own value types. For example, you might want to persist prop-
erties of type Int64 to VARCHAR columns. NHibernate does not provide a built-in type for this. But custom types
are not limited to mapping a property (or collection element) to a single table column. So, for example, you
might have a property Name { get; set; } of type String that is persisted to the columns FIRST_NAME, INI-
TIAL, SURNAME.

To implement a custom type, implement either NHibernate.UserTypes.IUserType or NHibern-

ate.UserTypes.ICompositeUserType and declare properties using the fully qualified name of the type. Check
out NHibernate.DomainModel.DoubleStringType to see the kind of things that are possible.

<property name="TwoStrings"
type="NHibernate.DomainModel.DoubleStringType, NHibernate.DomainModel">

<column name="first_string"/>
<column name="second_string"/>

</property>

Notice the use of <column> tags to map a property to multiple columns.

The ICompositeUserType, IEnhancedUserType, INullableUserType, IUserCollectionType, and IUserVer-

sionType interfaces provide support for more specialized uses.

You may even supply parameters to an IUserType in the mapping file. To do this, your IUserType must imple-
ment the NHibernate.UserTypes.IParameterizedType interface. To supply parameters to your custom type,
you can use the <type> element in your mapping files.

<property name="priority">
<type name="MyCompany.UserTypes.DefaultValueIntegerType">

<param name="default">0</param>
</type>

</property>

The IUserType can now retrieve the value for the parameter named default from the IDictionary object
passed to it.

If you use a certain UserType very often, it may be useful to define a shorter name for it. You can do this using
the <typedef> element. Typedefs assign a name to a custom type, and may also contain a list of default para-
meter values if the type is parameterized.

<typedef class="MyCompany.UserTypes.DefaultValueIntegerType" name="default_zero">
<param name="default">0</param>

</typedef>

<property name="priority" type="default_zero"/>

It is also possible to override the parameters supplied in a typedef on a case-by-case basis by using type para-
meters on the property mapping.

Even though NHibernate's rich range of built-in types and support for components means you will very rarely
need to use a custom type, it is nevertheless considered good form to use custom types for (non-entity) classes
that occur frequently in your application. For example, a MonetaryAmount class is a good candidate for an
ICompositeUserType, even though it could easily be mapped as a component. One motivation for this is ab-
straction. With a custom type, your mapping documents would be future-proofed against possible changes in
your way of representing monetary values.

5.2.4. Any type mappings

Basic O/R Mapping

NHibernate 5.1 59

There is one further type of property mapping. The <any> mapping element defines a polymorphic association
to classes from multiple tables. This type of mapping always requires more than one column. The first column
holds the type of the associated entity. The remaining columns hold the identifier. It is impossible to specify a
foreign key constraint for this kind of association, so this is most certainly not meant as the usual way of map-
ping (polymorphic) associations. You should use this only in very special cases (eg. audit logs, user session
data, etc).

<any name="AnyEntity" id-type="Int64" meta-type="Eg.Custom.Class2TablenameType">
<column name="table_name"/>
<column name="id"/>

</any>

The meta-type attribute lets the application specify a custom type that maps database column values to persist-
ent classes which have identifier properties of the type specified by id-type. If the meta-type returns instances
of System.Type, nothing else is required. On the other hand, if it is a basic type like String or Char, you must
specify the mapping from values to classes.

<any name="AnyEntity" id-type="Int64" meta-type="String">
<meta-value value="TBL_ANIMAL" class="Animal"/>
<meta-value value="TBL_HUMAN" class="Human"/>
<meta-value value="TBL_ALIEN" class="Alien"/>
<column name="table_name"/>
<column name="id"/>

</any>

<any
name="PropertyName" (1)
id-type="idtypename" (2)
meta-type="metatypename" (3)
cascade="none|all|save-update" (4)
access="field|property|nosetter|ClassName" (5)
optimistic-lock="true|false" (6)

>
<meta-value ... />
<meta-value ... />
.....
<column />
<column />
.....

</any>

(1) name: the property name.
(2) id-type: the identifier type.
(3) meta-type (optional - defaults to Type): a type that maps System.Type to a single database column or, al-

ternatively, a type that is allowed for a discriminator mapping.
(4) cascade (optional - defaults to none): the cascade style.
(5) access (optional - defaults to property): The strategy NHibernate should use for accessing the property

value.
(6) optimistic-lock (optional - defaults to true): Specifies that updates to this property do or do not require

acquisition of the optimistic lock. In other words, define if a version increment should occur if this prop-
erty is dirty.

5.3. SQL quoted identifiers

You may force NHibernate to quote an identifier in the generated SQL by enclosing the table or column name
in back-ticks in the mapping document. NHibernate will use the correct quotation style for the SQL Dialect

(usually double quotes, but brackets for SQL Server and back-ticks for MySQL).

Basic O/R Mapping

NHibernate 5.1 60

<class name="LineItem" table="`Line Item`">
<id name="Id" column="`Item Id`"/><generator class="assigned"/></id>
<property name="ItemNumber" column="`Item #`"/>
...

</class>

Quoting column identifiers is required if a table contains two columns differing only by case. Ensure you use
consistent casing when quoting identifiers.

5.4. Modular mapping files

It is possible to define subclass and joined-subclass mappings in separate mapping documents, directly be-
neath hibernate-mapping. This allows you to extend a class hierarchy just by adding a new mapping file. You
must specify an extends attribute in the subclass mapping, naming a previously mapped superclass. Use of this
feature makes the ordering of the mapping documents important!

<hibernate-mapping>
<subclass name="Eg.Subclass.DomesticCat, Eg"

extends="Eg.Cat, Eg" discriminator-value="D">
<property name="name" type="string"/>

</subclass>
</hibernate-mapping>

5.5. Generated Properties

Generated properties are properties which have their values generated by the database. Typically, NHibernate
applications needed to Refresh objects which contain any properties for which the database was generating val-
ues. Marking properties as generated, however, lets the application delegate this responsibility to NHibernate.
Essentially, whenever NHibernate issues an SQL INSERT or UPDATE for an entity which has defined gener-
ated properties, it immediately issues a select afterwards to retrieve the generated values.

Properties marked as generated must additionally be non-insertable and non-updatable. Only Section 5.1.8,
“version (optional)”, Section 5.1.9, “timestamp (optional)”, and Section 5.1.10, “property” can be marked as
generated.

never (the default) - means that the given property value is not generated within the database.

insert - states that the given property value is generated on insert, but is not regenerated on subsequent up-
dates. Things like created-date would fall into this category. Note that even though Section 5.1.8, “version
(optional)” and Section 5.1.9, “timestamp (optional)” properties can be marked as generated, this option is not
available there...

always - states that the property value is generated both on insert and on update.

5.6. Auxiliary Database Objects

Allows CREATE and DROP of arbitrary database objects, in conjunction with NHibernate's schema evolution
tools, to provide the ability to fully define a user schema within the NHibernate mapping files. Although de-
signed specifically for creating and dropping things like triggers or stored procedures, really any SQL com-
mand that can be run via a DbCommand.ExecuteNonQuery() method is valid here (ALTERs, INSERTS, etc).
There are essentially two modes for defining auxiliary database objects.

Basic O/R Mapping

NHibernate 5.1 61

The first mode is to explicitly list the CREATE and DROP commands out in the mapping file:

<nhibernate-mapping>
...
<database-object>

<create>CREATE TRIGGER my_trigger ...</create>
<drop>DROP TRIGGER my_trigger</drop>

</database-object>
</nhibernate-mapping>

The second mode is to supply a custom class which knows how to construct the CREATE and DROP com-
mands. This custom class must implement the NHibernate.Mapping.IAuxiliaryDatabaseObject interface.

<hibernate-mapping>
...
<database-object>

<definition class="MyTriggerDefinition, MyAssembly"/>
</database-object>

</hibernate-mapping>

You may also specify parameters to be passed to the database object:

<hibernate-mapping>
...
<database-object>

<definition class="MyTriggerDefinition, MyAssembly">
<param name="parameterName">parameterValue</param>

</definition>
</database-object>

</hibernate-mapping>

NHibernate will call IAuxiliaryDatabaseObject.SetParameterValues passing it a dictionary of parameter
names and values.

Additionally, these database objects can be optionally scoped such that they only apply when certain dialects
are used.

<hibernate-mapping>
...
<database-object>

<definition class="MyTriggerDefinition"/>
<dialect-scope name="NHibernate.Dialect.Oracle9iDialect"/>
<dialect-scope name="NHibernate.Dialect.Oracle8iDialect"/>

</database-object>
</hibernate-mapping>

Basic O/R Mapping

NHibernate 5.1 62

Chapter 6. Collection Mapping

6.1. Persistent Collections

NHibernate requires that persistent collection-valued fields be declared as a generic interface type, for example:

public class Product
{

public ISet<Part> Parts { get; set; } = new HashSet<Part>();

public string SerialNumber { get; set; }
}

The actual interface might be System.Collections.Generic.ICollection<T>, Sys-

tem.Collections.Generic.IList<T>, System.Collections.Generic.IDictionary<K, V>, Sys-

tem.Collections.Generic.ISet<T> or ... anything you like! (Where "anything you like" means you will have
to write an implementation of NHibernate.UserType.IUserCollectionType.)

Notice how we initialized the instance variable with an instance of HashSet<T>. This is the best way to initial-
ize collection valued properties of newly instantiated (non-persistent) instances. When you make the instance
persistent - by calling Save(), for example - NHibernate will actually replace the HashSet<T> with an instance
of NHibernate's own implementation of ISet<T>. Watch out for errors like this:

Cat cat = new DomesticCat();
Cat kitten = new DomesticCat();
....
ISet<Cat> kittens = new HashSet<Cat>();
kittens.Add(kitten);
cat.Kittens = kittens;
session.Save(cat);
kittens = cat.Kittens; //Okay, kittens collection is an ISet
HashSet<Cat> hs = (HashSet<Cat>) cat.Kittens; //Error!

Collection instances have the usual behavior of value types. They are automatically persisted when referenced
by a persistent object and automatically deleted when unreferenced. If a collection is passed from one persistent
object to another, its elements might be moved from one table to another. Two entities may not share a refer-
ence to the same collection instance. Due to the underlying relational model, collection-valued properties do
not support null value semantics; NHibernate does not distinguish between a null collection reference and an
empty collection.

You shouldn't have to worry much about any of this. Just use NHibernate's collections the same way you use
ordinary .NET collections, but make sure you understand the semantics of bidirectional associations (discussed
later) before using them.

Collection instances are distinguished in the database by a foreign key to the owning entity. This foreign key is
referred to as the collection key . The collection key is mapped by the <key> element.

Collections may contain almost any other NHibernate type, including all basic types, custom types, entity types
and components. This is an important definition: An object in a collection can either be handled with "pass by
value" semantics (it therefore fully depends on the collection owner) or it can be a reference to another entity
with an own lifecycle. Collections may not contain other collections. The contained type is referred to as the
collection element type. Collection elements are mapped by <element>, <composite-element>,
<one-to-many>, <many-to-many> or <many-to-any>. The first two map elements with value semantics, the oth-
er three are used to map entity associations.

NHibernate 5.1 63

All collection types except ISet and bag have an index column - a column that maps to an array or IList index
or IDictionary key. The index of an IDictionary may be of any basic type, an entity type or even a composite
type (it may not be a collection). The index of an array or list is always of type Int32. Indexes are mapped us-
ing <index>, <index-many-to-many>, <composite-index> or <index-many-to-any>.

There are quite a range of mappings that can be generated for collections, covering many common relational
models. We suggest you experiment with the schema generation tool to get a feeling for how various mapping
declarations translate to database tables.

6.2. Mapping a Collection

Collections are declared by the <set>, <list>, <map>, <bag>, <array> and <primitive-array> elements.
<map> is representative:

<map
name="propertyName" (1)
table="table_name" (2)
schema="schema_name" (3)
lazy="true|false|extra" (4)
inverse="true|false" (5)
cascade="all|none|save-update|delete|all-delete-orphan" (6)
sort="unsorted|natural|comparatorClass" (7)
order-by="column_name asc|desc" (8)
where="arbitrary sql where condition" (9)
fetch="select|join" (10)
batch-size="N" (11)
access="field|property|ClassName" (12)
optimistic-lock="true|false" (13)
generic="true|false" (14)

>

<key />
<index />
<element />

</map>

(1) name the collection property name
(2) table (optional - defaults to property name) the name of the collection table (not used for one-to-many

associations)
(3) schema (optional) the name of a table schema to override the schema declared on the root element
(4) lazy (optional - defaults to true) may be used to disable lazy fetching and specify that the association is

always eagerly fetched. Using extra fetches only the elements that are needed - see Section 20.1,
“Fetching strategies” for more information.

(5) inverse (optional - defaults to false) mark this collection as the "inverse" end of a bidirectional associ-
ation

(6) cascade (optional - defaults to none) enable operations to cascade to child entities
(7) sort (optional) specify a sorted collection with natural sort order, or a given comparator class
(8) order-by (optional) specify a table column (or columns) that define the iteration order of the IDiction-

ary, ISet or bag, together with an optional asc or desc
(9) where (optional) specify an arbitrary SQL WHERE condition to be used when retrieving or removing the

collection (useful if the collection should contain only a subset of the available data)
(10) fetch (optional) Choose between outer-join fetching and fetching by sequential select.
(11) batch-size (optional, defaults to 1) specify a "batch size" for lazily fetching instances of this collection.
(12) access (optional - defaults to property): The strategy NHibernate should use for accessing the property

value.
(13) optimistic-lock (optional - defaults to true): Species that changes to the state of the collection results in

Collection Mapping

NHibernate 5.1 64

increment of the owning entity's version. (For one to many associations, it is often reasonable to disable
this setting.)

(14) generic (optional, obsolete): Choose between generic and non-generic collection interfaces. But currently
NHibernate only supports generic collections.

The mapping of an IList or array requires a separate table column holding the array or list index (the i in
foo[i]). If your relational model doesn't have an index column, e.g. if you're working with legacy data, use an
unordered ISet instead. This seems to put people off who assume that IList should just be a more convenient
way of accessing an unordered collection. NHibernate collections strictly obey the actual semantics attached to
the ISet, IList and IDictionary interfaces. IList elements don't just spontaneously rearrange themselves!

On the other hand, people who planned to use the IList to emulate bag semantics have a legitimate grievance
here. A bag is an unordered, unindexed collection which may contain the same element multiple times. The
.NET collections framework lacks an IBag interface, hence you have to emulate it with an IList. NHibernate
lets you map properties of type IList or ICollection with the <bag> element. Note that bag semantics are not
really part of the ICollection contract and they actually conflict with the semantics of the IList contract
(however, you can sort the bag arbitrarily, discussed later in this chapter).

Note: Large NHibernate bags mapped with inverse="false" are inefficient and should be avoided; NHibern-
ate can't create, delete or update rows individually, because there is no key that may be used to identify an indi-
vidual row.

6.3. Collections of Values and Many-To-Many Associations

A collection table is required for any collection of values and any collection of references to other entities
mapped as a many-to-many association (the natural semantics for a .NET collection). The table requires
(foreign) key column(s), element column(s) and possibly index column(s).

The foreign key from the collection table to the table of the owning class is declared using a <key> element.

<key column="column_name"/>

(1) column (required): The name of the foreign key column.

For indexed collections like maps and lists, we require an <index> element. For lists, this column contains se-
quential integers numbered from zero. Make sure that your index really starts from zero if you have to deal with
legacy data. For maps, the column may contain any values of any NHibernate type.

<index
column="column_name" (1)
type="typename" (2)

/>

(1) column (required): The name of the column holding the collection index values.
(2) type (optional, defaults to Int32): The type of the collection index.

Alternatively, a map may be indexed by objects of entity type. We use the <index-many-to-many> element.

<index-many-to-many
column="column_name" (1)
class="ClassName" (2)

/>

(1) column (required): The name of the foreign key column for the collection index values.
(2) class (required): The entity class used as the collection index.

Collection Mapping

NHibernate 5.1 65

For a collection of values, we use the <element> tag.

<element
column="column_name" (1)
type="typename" (2)

/>

(1) column (required): The name of the column holding the collection element values.
(2) type (required): The type of the collection element.

A collection of entities with its own table corresponds to the relational notion of many-to-many association. A
many to many association is the most natural mapping of a .NET collection but is not usually the best relational
model.

<many-to-many
column="column_name" (1)
class="ClassName" (2)
fetch="join|select" (3)
not-found="ignore|exception" (4)

/>

(1) column (required): The name of the element foreign key column.
(2) class (required): The name of the associated class.
(3) fetch (optional, defaults to join): enables outer-join or sequential select fetching for this association.

This is a special case; for full eager fetching (in a single SELECT) of an entity and its many-to-many rela-
tionships to other entities, you would enable join fetching not only of the collection itself, but also with
this attribute on the <many-to-many> nested element.

(4) not-found (optional - defaults to exception): Specifies how foreign keys that reference missing rows will
be handled: ignore will treat a missing row as a null association.

Some examples, first, a set of strings:

<set name="Names" table="NAMES">
<key column="GROUPID"/>
<element column="NAME" type="String"/>

</set>

A bag containing integers (with an iteration order determined by the order-by attribute):

<bag name="Sizes" table="SIZES" order-by="SIZE ASC">
<key column="OWNER"/>
<element column="SIZE" type="Int32"/>

</bag>

An array of entities - in this case, a many to many association (note that the entities are lifecycle objects, cas-
cade="all"):

<array name="Foos" table="BAR_FOOS" cascade="all">
<key column="BAR_ID"/>
<index column="I"/>
<many-to-many column="FOO_ID" class="Eg.Foo, Eg"/>

</array>

A map from string indices to dates:

<map name="Holidays" table="holidays" schema="dbo" order-by="hol_name asc">
<key column="id"/>
<index column="hol_name" type="String"/>
<element column="hol_date" type="Date"/>

</map>

Collection Mapping

NHibernate 5.1 66

A list of components (discussed in the next chapter):

<list name="CarComponents" table="car_components">
<key column="car_id"/>
<index column="posn"/>
<composite-element class="Eg.Car.CarComponent">

<property name="Price" type="float"/>
<property name="Type" type="Eg.Car.ComponentType, Eg"/>
<property name="SerialNumber" column="serial_no" type="String"/>

</composite-element>
</list>

6.4. One-To-Many Associations

A one to many association links the tables of two classes directly, with no intervening collection table. (This
implements a one-to-many relational model.) This relational model loses some of the semantics of .NET collec-
tions:

• No null values may be contained in a dictionary, set or list
• An instance of the contained entity class may not belong to more than one instance of the collection
• An instance of the contained entity class may not appear at more than one value of the collection index

An association from Foo to Bar requires the addition of a key column and possibly an index column to the table
of the contained entity class, Bar. These columns are mapped using the <key> and <index> elements described
above.

The <one-to-many> tag indicates a one to many association.

<one-to-many
class="ClassName" (1)
not-found="ignore|exception" (2)

/>

(1) class (required): The name of the associated class.
(2) not-found (optional - defaults to exception): Specifies how foreign keys that reference missing rows will

be handled: ignore will treat a missing row as a null association.

Example:

<set name="Bars">
<key column="foo_id"/>
<one-to-many class="Eg.Bar, Eg"/>

</set>

Notice that the <one-to-many> element does not need to declare any columns. Nor is it necessary to specify the
table name anywhere.

Very Important Note: If the <key> column of a <one-to-many> association is declared NOT NULL, NHibernate
may cause constraint violations when it creates or updates the association. To prevent this problem, you must
use a bidirectional association with the many valued end (the set or bag) marked as inverse="true". See the
discussion of bidirectional associations later in this chapter.

6.5. Lazy Initialization

Collections (other than arrays) may be lazily initialized, meaning they load their state from the database only

Collection Mapping

NHibernate 5.1 67

when the application needs to access it. Initialization happens transparently to the user so the application would
not normally need to worry about this (in fact, transparent lazy initialization is the main reason why NHibernate
needs its own collection implementations). However, if the application tries something like this:

IDictionary<string, int> permissions;
using (s = sessions.OpenSession())
using (ITransaction tx = sessions.BeginTransaction())
{

var u = s.Load<User>(userId);
permissions = u.Permissions;
tx.Commit();

}

int accessLevel = permissions["accounts"]; // Error!

It could be in for a nasty surprise. Since the permissions collection was not initialized when the ISession was
committed, the collection will never be able to load its state. The fix is to move the line that reads from the col-
lection to just before the commit. (There are other more advanced ways to solve this problem, however.)

Alternatively, use a non-lazy collection. Since lazy initialization can lead to bugs like that above, non-laziness
is the default. However, it is intended that lazy initialization be used for almost all collections, especially for
collections of entities (for reasons of efficiency).

Exceptions that occur while lazily initializing a collection are wrapped in a LazyInitializationException.

Declare a lazy collection using the optional lazy attribute:

<set name="Names" table="NAMES" lazy="true">
<key column="group_id"/>
<element column="NAME" type="String"/>

</set>

In some application architectures, particularly where the code that accesses data using NHibernate, and the
code that uses it are in different application layers, it can be a problem to ensure that the ISession is open when
a collection is initialized. There are two basic ways to deal with this issue:

• In a web-based application, an event handler can be used to close the ISession only at the very end of a
user request, once the rendering of the view is complete. Of course, this places heavy demands upon the
correctness of the exception handling of your application infrastructure. It is vitally important that the ISes-

sion is closed and the transaction ended before returning to the user, even when an exception occurs during
rendering of the view. The event handler has to be able to access the ISession for this approach. We re-
commend that the current ISession is stored in the HttpContext.Items collection (see chapter 1, Sec-
tion 1.4, “Playing with cats”, for an example implementation).

• In an application with a separate business tier, the business logic must "prepare" all collections that will be
needed by the web tier before returning. This means that the business tier should load all the data and return
all the data already initialized to the presentation/web tier that is required for a particular use case. Usually,
the application calls NHibernateUtil.Initialize() for each collection that will be needed in the web tier
(this call must occur before the session is closed) or retrieves the collection eagerly using a NHibernate
query with a FETCH clause.

• You may also attach a previously loaded object to a new ISession with Update() or Lock() before access-
ing uninitialized collections (or other proxies). NHibernate can not do this automatically, as it would intro-
duce ad hoc transaction semantics!

You can use the CreateFilter() method of the NHibernate ISession API to get the size of a collection without

Collection Mapping

NHibernate 5.1 68

initializing it:

var count = s
.CreateFilter(collection, "select count(*)")
.UniqueResult<long>();

CreateFilter() is also used to efficiently retrieve subsets of a collection without needing to initialize the
whole collection.

6.6. Sorted Collections

NHibernate supports collections implemented by System.Collections.Generic.SortedList<T> and Sys-

tem.Collections.Generic.SortedSet<T>. You must specify a comparer in the mapping file:

<set name="Aliases" table="person_aliases" sort="natural">
<key column="person"/>
<element column="name" type="String"/>

</set>

<map name="Holidays" sort="My.Custom.HolidayComparer, MyAssembly" lazy="true">
<key column="year_id"/>
<index column="hol_name" type="String"/>
<element column="hol_date" type="Date"/>

</map>

Allowed values of the sort attribute are unsorted, natural and the name of a class implementing Sys-

tem.Collections.Generic.IComparer<T>.

If you want the database itself to order the collection elements use the order-by attribute of set, bag or map

mappings. This performs the ordering in the SQL query, not in memory.

Setting the order-by attribute tells NHibernate to use Iesi.Collections.Generic.LinkedHashSet class in-
ternally for sets, maintaining the order of the elements. It is not supported on maps.

<set name="Aliases" table="person_aliases" order-by="name asc">
<key column="person"/>
<element column="name" type="String"/>

</set>

<map name="Holidays" order-by="hol_date, hol_name" lazy="true">
<key column="year_id"/>
<index column="hol_name" type="String"/>
<element column="hol_date type="Date"/>

</map>

Note that the value of the order-by attribute is an SQL ordering, not a HQL ordering!

Associations may even be sorted by some arbitrary criteria at runtime using a CreateFilter().

sortedUsers = s
.CreateFilter(group.Users, "order by this.Name")
.List<User>();

6.7. Using an <idbag>

If you've fully embraced our view that composite keys are a bad thing and that entities should have synthetic
identifiers (surrogate keys), then you might find it a bit odd that the many to many associations and collections

Collection Mapping

NHibernate 5.1 69

of values that we've shown so far all map to tables with composite keys! Now, this point is quite arguable; a
pure association table doesn't seem to benefit much from a surrogate key (though a collection of composite val-
ues might). Nevertheless, NHibernate provides a feature that allows you to map many to many associations and
collections of values to a table with a surrogate key.

The <idbag> element lets you map a List (or Collection) with bag semantics.

<idbag name="Lovers" table="LOVERS" lazy="true">
<collection-id column="ID" type="Int64">

<generator class="hilo"/>
</collection-id>
<key column="PERSON1"/>
<many-to-many column="PERSON2" class="Eg.Person" fetch="join"/>

</idbag>

As you can see, an <idbag> has a synthetic id generator, just like an entity class! A different surrogate key is
assigned to each collection row. NHibernate does not provide any mechanism to discover the surrogate key
value of a particular row, however.

Note that the update performance of an <idbag> is much better than a regular <bag>! NHibernate can locate in-
dividual rows efficiently and update or delete them individually, just like a list, map or set.

As of version 2.0, the native identifier generation strategy is supported for <idbag> collection identifiers.

6.8. Bidirectional Associations

A bidirectional association allows navigation from both "ends" of the association. Two kinds of bidirectional
association are supported:

one-to-many
set or bag valued at one end, single-valued at the other

many-to-many
set or bag valued at both ends

You may specify a bidirectional many-to-many association simply by mapping two many-to-many associations
to the same database table and declaring one end as inverse (which one is your choice). Here's an example of a
bidirectional many-to-many association from a class back to itself (each category can have many items and
each item can be in many categories):

<class name="NHibernate.Auction.Category, NHibernate.Auction">
<id name="Id" column="ID"/>
...
<bag name="Items" table="CATEGORY_ITEM" lazy="true">
<key column="CATEGORY_ID"/>
<many-to-many class="NHibernate.Auction.Item, NHibernate.Auction" column="ITEM_ID"/>

</bag>
</class>

<class name="NHibernate.Auction.Item, NHibernate.Auction">
<id name="id" column="ID"/>
...

<!-- inverse end -->
<bag name="categories" table="CATEGORY_ITEM" inverse="true" lazy="true">
<key column="ITEM_ID"/>
<many-to-many class="NHibernate.Auction.Category, NHibernate.Auction"

column="CATEGORY_ID"/>

Collection Mapping

NHibernate 5.1 70

</bag>
</class>

Changes made only to the inverse end of the association are not persisted. This means that NHibernate has two
representations in memory for every bidirectional association, one link from A to B and another link from B to
A. This is easier to understand if you think about the .NET object model and how we create a many-to-many re-
lationship in C#:

category.Items.Add(item); // The category now "knows" about the relationship
item.Categories.Add(category); // The item now "knows" about the relationship

session.Update(item); // No effect, nothing will be saved!
session.Update(category); // The relationship will be saved

The non-inverse side is used to save the in-memory representation to the database. We would get an unneces-
sary INSERT/UPDATE and probably even a foreign key violation if both would trigger changes! The same is
of course also true for bidirectional one-to-many associations.

You may map a bidirectional one-to-many association by mapping a one-to-many association to the same table
column(s) as a many-to-one association and declaring the many-valued end inverse="true".

<class name="Eg.Parent, Eg">
<id name="Id" column="id"/>
....
<set name="Children" inverse="true" lazy="true">

<key column="parent_id"/>
<one-to-many class="Eg.Child, Eg"/>

</set>
</class>

<class name="Eg.Child, Eg">
<id name="Id" column="id"/>
....
<many-to-one name="Parent" class="Eg.Parent, Eg" column="parent_id"/>

</class>

Mapping one end of an association with inverse="true" doesn't affect the operation of cascades, both are dif-
ferent concepts!

6.9. Bidirectional associations with indexed collections

There are some additional considerations for bidirectional mappings with indexed collections (where one end is
represented as a <list> or <map>) when using NHibernate mapping files. If there is a property of the child class
that maps to the index column you can use inverse="true" on the collection mapping:

<class name="Parent">
<id name="Id" column="parent_id"/>
....
<map name="Children" inverse="true">

<key column="parent_id"/>
<map-key column="name"

type="string"/>
<one-to-many class="Child"/>

</map>
</class>

<class name="Child">
<id name="Id" column="child_id"/>
....
<property name="Name" column="name"

Collection Mapping

NHibernate 5.1 71

not-null="true"/>
<many-to-one name="Parent"

class="Parent"
column="parent_id"
not-null="true"/>

</class>

If there is no such property on the child class, the association cannot be considered truly bidirectional. That is,
there is information available at one end of the association that is not available at the other end. In this case,
you cannot map the collection inverse="true". Instead, you could use the following mapping:

<class name="Parent">
<id name="Id" column="parent_id"/>
....
<map name="Children">

<key column="parent_id"
not-null="true"/>

<map-key column="name"
type="string"/>

<one-to-many class="Child"/>
</map>

</class>

<class name="Child">
<id name="Id" column="child_id"/>
....
<many-to-one name="Parent"

class="Parent"
column="parent_id"
insert="false"
update="false"
not-null="true"/>

</class>

Note that in this mapping, the collection-valued end of the association is responsible for updates to the foreign
key.

6.10. Ternary Associations

There are two possible approaches to mapping a ternary association. One approach is to use composite ele-
ments (discussed below). Another is to use an IDictionary with an association as its index:

<map name="Contracts" lazy="true">
<key column="employer_id"/>
<index-many-to-many column="employee_id" class="Employee"/>
<one-to-many class="Contract"/>

</map>

<map name="Connections" lazy="true">
<key column="node1_id"/>
<index-many-to-many column="node2_id" class="Node"/>
<many-to-many column="connection_id" class="Connection"/>

</map>

6.11. Heterogeneous Associations

The <many-to-any> and <index-many-to-any> elements provide for true heterogeneous associations. These
mapping elements work in the same way as the <any> element - and should also be used rarely, if ever.

Collection Mapping

NHibernate 5.1 72

6.12. Collection examples

The previous sections are pretty confusing. So lets look at an example. This class:

using System;
using System.Collections.Generic;

namespace Eg

public class Parent
{

public long Id { get; set; }

private ISet<Child> Children { get; set; }

....

....
}

}

has a collection of Eg.Child instances. If each child has at most one parent, the most natural mapping is a one-
to-many association:

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
assembly="Eg" namespace="Eg">

<class name="Parent">
<id name="Id">

<generator class="sequence"/>
</id>
<set name="Children" lazy="true">

<key column="parent_id"/>
<one-to-many class="Child"/>

</set>
</class>

<class name="Child">
<id name="Id">

<generator class="sequence"/>
</id>
<property name="Name"/>

</class>

</hibernate-mapping>

This maps to the following table definitions:

create table parent (Id bigint not null primary key)
create table child (Id bigint not null primary key, Name varchar(255), parent_id bigint)
alter table child add constraint childfk0 (parent_id) references parent

If the parent is required, use a bidirectional one-to-many association:

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
assembly="Eg" namespace="Eg">

<class name="Parent">
<id name="Id">

<generator class="sequence"/>
</id>
<set name="Children" inverse="true" lazy="true">

<key column="parent_id"/>
<one-to-many class="Child"/>

</set>
</class>

Collection Mapping

NHibernate 5.1 73

<class name="Child">
<id name="Id">

<generator class="sequence"/>
</id>
<property name="Name"/>
<many-to-one name="parent" class="Parent" column="parent_id" not-null="true"/>

</class>

</hibernate-mapping>

Notice the NOT NULL constraint:

create table parent (Id bigint not null primary key)
create table child (Id bigint not null

primary key,
Name varchar(255),
parent_id bigint not null)

alter table child add constraint childfk0 (parent_id) references parent

On the other hand, if a child might have multiple parents, a many-to-many association is appropriate:

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
assembly="Eg" namespace="Eg">

<class name="Parent">
<id name="Id">

<generator class="sequence"/>
</id>
<set name="Children" lazy="true" table="childset">

<key column="parent_id"/>
<many-to-many class="Child" column="child_id"/>

</set>
</class>

<class name="eg.Child">
<id name="Id">

<generator class="sequence"/>
</id>
<property name="Name"/>

</class>

</hibernate-mapping>

Table definitions:

create table parent (Id bigint not null primary key)
create table child (Id bigint not null primary key, name varchar(255))
create table childset (parent_id bigint not null,

child_id bigint not null,
primary key (parent_id, child_id))

alter table childset add constraint childsetfk0 (parent_id) references parent
alter table childset add constraint childsetfk1 (child_id) references child

See also Chapter 22, Example: Parent/Child.

Collection Mapping

NHibernate 5.1 74

Chapter 7. Component Mapping
The notion of a component is re-used in several different contexts, for different purposes, throughout NHibern-
ate.

7.1. Dependent objects

A component is a contained object that is persisted as a value type, not an entity. The term "component" refers
to the object-oriented notion of composition (not to architecture-level components). For example, you might
model a person like this:

public class Person
{

public string Key { get; set; }

public DateTime Birthday { get; set; }

public Name Name { get; set; }

......

......
}

public class Name
{

public string First { get; set; }

public string Last { get; set; }

public char Initial { get; set; }
}

Now Name may be persisted as a component of Person. Notice that Name defines getter and setter methods for
its persistent properties, but doesn't need to declare any interfaces or identifier properties.

Our NHibernate mapping would look like:

<class name="Eg.Person, Eg" table="person">
<id name="Key" column="pid" type="string">

<generator class="uuid.hex"/>
</id>
<property name="Birthday" type="date"/>
<component name="Name" class="Eg.Name, Eg"> <!-- class attribute optional -->

<property name="Initial"/>
<property name="First"/>
<property name="Last"/>

</component>
</class>

The person table would have the columns pid, Birthday, Initial, First and Last.

Like all value types, components do not support shared references. The null value semantics of a component
are ad hoc. When reloading the containing object, NHibernate will assume that if all component columns are
null, then the entire component is null. This should be okay for most purposes.

The properties of a component may be of any NHibernate type (collections, many-to-one associations, other
components, etc). Nested components should not be considered an exotic usage. NHibernate is intended to sup-
port a very fine-grained object model.

NHibernate 5.1 75

The <component> element allows a <parent> sub-element that maps a property of the component class as a ref-
erence back to the containing entity.

<class name="Eg.Person, Eg" table="person">
<id name="Key" column="pid" type="string">

<generator class="uuid.hex"/>
</id>
<property name="Birthday" type="date"/>
<component name="Name" class="Eg.Name, Eg">

<parent name="NamedPerson"/> <!-- reference back to the Person -->
<property name="Initial"/>
<property name="First"/>
<property name="Last"/>

</component>
</class>

7.2. Collections of dependent objects

Collections of components are supported (eg. an array of type Name). Declare your component collection by re-
placing the <element> tag with a <composite-element> tag.

<set name="SomeNames" table="some_names" lazy="true">
<key column="id"/>
<composite-element class="Eg.Name, Eg"> <!-- class attribute required -->

<property name="Initial"/>
<property name="First"/>
<property name="Last"/>

</composite-element>
</set>

Note: if you define an ISet of composite elements, it is very important to implement Equals() and GetHash-

Code() correctly.

Composite elements may contain components but not collections. If your composite element itself contains
components, use the <nested-composite-element> tag. This is a pretty exotic case - a collection of compon-
ents which themselves have components. By this stage you should be asking yourself if a one-to-many associ-
ation is more appropriate. Try remodelling the composite element as an entity - but note that even though the
object model is the same, the relational model and persistence semantics are still slightly different.

Please note that a composite element mapping doesn't support null-able properties if you're using a <set>.
NHibernate has to use each columns value to identify a record when deleting objects (there is no separate
primary key column in the composite element table), which is not possible with null values. You have to either
use only not-null properties in a composite-element or choose a <list>, <map>, <bag> or <idbag>.

A special case of a composite element is a composite element with a nested <many-to-one> element. A map-
ping like this allows you to map extra columns of a many-to-many association table to the composite element
class. The following is a many-to-many association from Order to Item where PurchaseDate, Price and
Quantity are properties of the association:

<class name="Order" >
....
<set name="PurchasedItems" table="purchase_items" lazy="true">

<key column="order_id">
<composite-element class="Purchase">

<property name="PurchaseDate"/>
<property name="Price"/>
<property name="Quantity"/>
<many-to-one name="Item" class="Item"/> <!-- class attribute is optional -->

</composite-element>

Component Mapping

NHibernate 5.1 76

</set>
</class>

Even ternary (or quaternary, etc) associations are possible:

<class name="Order" >
....
<set name="PurchasedItems" table="purchase_items" lazy="true">

<key column="order_id">
<composite-element class="OrderLine">

<many-to-one name="PurchaseDetails class="Purchase"/>
<many-to-one name="Item" class="Item"/>

</composite-element>
</set>

</class>

Composite elements may appear in queries using the same syntax as associations to other entities.

7.3. Components as IDictionary indices

The <composite-index> element lets you map a component class as the key of an IDictionary. Make sure you
override GetHashCode() and Equals() correctly on the component class.

7.4. Components as composite identifiers

You may use a component as an identifier of an entity class. Your component class must satisfy certain require-
ments:

• It must be marked with the Serializable attribute.
• It must re-implement Equals() and GetHashCode(), consistently with the database's notion of composite

key equality.
• It should re-implement ToString() if you consider using the second level cache. See Section 26.1, “How to

use a cache?”.

You can't use an IIdentifierGenerator to generate composite keys. Instead the application must assign its
own identifiers.

Since a composite identifier must be assigned to the object before saving it, we can't use unsaved-value of the
identifier to distinguish between newly instantiated instances and instances saved in a previous session.

You may instead implement IInterceptor.IsTransient() if you wish to use SaveOrUpdate() or cascading
save / update. As an alternative, you may also set the unsaved-value attribute on a <version> (or
<timestamp>) element to specify a value that indicates a new transient instance. In this case, the version of the
entity is used instead of the (assigned) identifier and you don't have to implement IIntercept-

or.IsTransient() yourself.

Use the <composite-id> tag (same attributes and elements as <component>) in place of <id> for the declaration
of a composite identifier class:

<class name="Foo" table="FOOS">
<composite-id name="CompId" class="FooCompositeID">

<key-property name="String"/>
<key-property name="Short"/>
<key-property name="Date" column="date_" type="Date"/>

</composite-id>
<property name="Name"/>

Component Mapping

NHibernate 5.1 77

....
</class>

Now, any foreign keys into the table FOOS are also composite. You must declare this in your mappings for other
classes. An association to Foo would be declared like this:

<many-to-one name="Foo" class="Foo">
<!-- the "class" attribute is optional, as usual -->

<column name="foo_string"/>
<column name="foo_short"/>
<column name="foo_date"/>

</many-to-one>

This new <column> tag is also used by multi-column custom types. Actually it is an alternative to the column at-
tribute everywhere. A collection with elements of type Foo would use:

<set name="Foos">
<key column="owner_id"/>
<many-to-many class="Foo">

<column name="foo_string"/>
<column name="foo_short"/>
<column name="foo_date"/>

</many-to-many>
</set>

On the other hand, <one-to-many>, as usual, declares no columns.

If Foo itself contains collections, they will also need a composite foreign key.

<class name="Foo">
....
....
<set name="Dates" lazy="true">

<key> <!-- a collection inherits the composite key type -->
<column name="foo_string"/>
<column name="foo_short"/>
<column name="foo_date"/>

</key>
<element column="foo_date" type="Date"/>

</set>
</class>

7.5. Dynamic components

You may even map a property of type IDictionary:

<dynamic-component name="UserAttributes">
<property name="Foo" column="FOO"/>
<property name="Bar" column="BAR"/>
<many-to-one name="Baz" class="Baz" column="BAZ"/>

</dynamic-component>

The semantics of a <dynamic-component> mapping are identical to <component>. The advantage of this kind of
mapping is the ability to determine the actual properties of the component at deployment time, just by editing
the mapping document. (Runtime manipulation of the mapping document is also possible, using a DOM pars-
er.)

Component Mapping

NHibernate 5.1 78

Chapter 8. Inheritance Mapping

8.1. The Three Strategies

NHibernate supports the three basic inheritance mapping strategies.

• table per class hierarchy

• table per subclass

• table per concrete class

In addition, NHibernate supports a fourth, slightly different kind of polymorphism:

• implicit polymorphism

It is possible to use different mapping strategies for different branches of the same inheritance hierarchy, and
then make use of implicit polymorphism to achieve polymorphism across the whole hierarchy. However,
NHibernate does not support mixing <subclass>, and <joined-subclass> and <union-subclass> mappings
under the same root <class> element. It is possible to mix together the table per hierarchy and table per sub-
class strategies, under the the same <class> element, by combining the <subclass> and <join> elements (see
below).

It is possible to define subclass, union-subclass, and joined-subclass mappings in separate mapping docu-
ments, directly beneath hibernate-mapping. This allows you to extend a class hierarchy just by adding a new
mapping file. You must specify an extends attribute in the subclass mapping, naming a previously mapped su-
perclass.

<hibernate-mapping>
<subclass name="DomesticCat" extends="Cat" discriminator-value="D">

<property name="name" type="string"/>
</subclass>

</hibernate-mapping>

8.1.1. Table per class hierarchy

Suppose we have an interface IPayment, with implementors CreditCardPayment, CashPayment, ChequePay-
ment. The table-per-hierarchy mapping would look like:

<class name="IPayment" table="PAYMENT">
<id name="Id" type="Int64" column="PAYMENT_ID">

<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="String"/>
<property name="Amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">

...
</subclass>
<subclass name="CashPayment" discriminator-value="CASH">

...
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">

...

NHibernate 5.1 79

</subclass>
</class>

Exactly one table is required. There is one big limitation of this mapping strategy: columns declared by the sub-
classes may not have NOT NULL constraints.

8.1.2. Table per subclass

A table-per-subclass mapping would look like:

<class name="IPayment" table="PAYMENT">
<id name="Id" type="Int64" column="PAYMENT_ID">

<generator class="native"/>
</id>
<property name="Amount" column="AMOUNT"/>
...
<joined-subclass name="CreditCardPayment" table="CREDIT_PAYMENT">

<key column="PAYMENT_ID"/>
...

</joined-subclass>
<joined-subclass name="CashPayment" table="CASH_PAYMENT">

<key column="PAYMENT_ID"/>
...

</joined-subclass>
<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">

<key column="PAYMENT_ID"/>
...

</joined-subclass>
</class>

Four tables are required. The three subclass tables have primary key associations to the superclass table (so the
relational model is actually a one-to-one association).

8.1.3. Table per subclass, using a discriminator

Note that NHibernate's implementation of table-per-subclass requires no discriminator column. Other object/
relational mappers use a different implementation of table-per-subclass which requires a type discriminator
column in the superclass table. The approach taken by NHibernate is much more difficult to implement but ar-
guably more correct from a relational point of view. If you would like to use a discriminator column with the
table per subclass strategy, you may combine the use of <subclass> and <join>, as follow:

<class name="Payment" table="PAYMENT">
<id name="Id" type="Int64" column="PAYMENT_ID">

<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="Amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">

<join table="CREDIT_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="CreditCardType" column="CCTYPE"/>
...

</join>
</subclass>
<subclass name="CashPayment" discriminator-value="CASH">

<join table="CASH_PAYMENT">
<key column="PAYMENT_ID"/>
...

</join>
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">

Inheritance Mapping

NHibernate 5.1 80

<join table="CHEQUE_PAYMENT" fetch="select">
<key column="PAYMENT_ID"/>
...

</join>
</subclass>

</class>

The optional fetch="select" declaration tells NHibernate not to fetch the ChequePayment subclass data using
an outer join when querying the superclass.

8.1.4. Mixing table per class hierarchy with table per subclass

You may even mix the table per hierarchy and table per subclass strategies using this approach:

<class name="Payment" table="PAYMENT">
<id name="Id" type="Int64" column="PAYMENT_ID">

<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="Amount" column="AMOUNT"/>
...
<subclass name="CreditCardPayment" discriminator-value="CREDIT">

<join table="CREDIT_PAYMENT">
<property name="CreditCardType" column="CCTYPE"/>
...

</join>
</subclass>
<subclass name="CashPayment" discriminator-value="CASH">

...
</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">

...
</subclass>

</class>

For any of these mapping strategies, a polymorphic association to IPayment is mapped using <many-to-one>.

<many-to-one name="Payment" column="PAYMENT" class="IPayment"/>

8.1.5. Table per concrete class

There are two ways we could go about mapping the table per concrete class strategy. The first is to use
<union-subclass>.

<class name="Payment">
<id name="Id" type="Int64" column="PAYMENT_ID">

<generator class="sequence"/>
</id>
<property name="Amount" column="AMOUNT"/>
...
<union-subclass name="CreditCardPayment" table="CREDIT_PAYMENT">

<property name="CreditCardType" column="CCTYPE"/>
...

</union-subclass>
<union-subclass name="CashPayment" table="CASH_PAYMENT">

...
</union-subclass>
<union-subclass name="ChequePayment" table="CHEQUE_PAYMENT">

...
</union-subclass>

</class>

Inheritance Mapping

NHibernate 5.1 81

Three tables are involved for the subclasses. Each table defines columns for all properties of the class, includ-
ing inherited properties.

The limitation of this approach is that if a property is mapped on the superclass, the column name must be the
same on all subclass tables. (We might relax this in a future release of NHibernate.) The identity generator
strategy is not allowed in union subclass inheritance, indeed the primary key seed has to be shared across all
unioned subclasses of a hierarchy.

If your superclass is abstract, map it with abstract="true". Of course, if it is not abstract, an additional table
(defaults to PAYMENT in the example above) is needed to hold instances of the superclass.

8.1.6. Table per concrete class, using implicit polymorphism

An alternative approach is to make use of implicit polymorphism:

<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="Id" type="Int64" column="CREDIT_PAYMENT_ID">

<generator class="native"/>
</id>
<property name="Amount" column="CREDIT_AMOUNT"/>
...

</class>

<class name="CashPayment" table="CASH_PAYMENT">
<id name="Id" type="Int64" column="CASH_PAYMENT_ID">

<generator class="native"/>
</id>
<property name="Amount" column="CASH_AMOUNT"/>
...

</class>

<class name="ChequePayment" table="CHEQUE_PAYMENT">
<id name="Id" type="Int64" column="CHEQUE_PAYMENT_ID">

<generator class="native"/>
</id>
<property name="Amount" column="CHEQUE_AMOUNT"/>
...

</class>

Notice that nowhere do we mention the IPayment interface explicitly. Also notice that properties of IPayment
are mapped in each of the subclasses. If you want to avoid duplication, consider using XML entities (e.g. [
<!ENTITY allproperties SYSTEM "allproperties.xml">] in the DOCTYPE declaration and
&allproperties; in the mapping).

The disadvantage of this approach is that NHibernate does not generate SQL UNIONs when performing poly-
morphic queries.

For this mapping strategy, a polymorphic association to IPayment is usually mapped using <any>.

<any name="Payment" meta-type="string" id-type="Int64">
<meta-value value="CREDIT" class="CreditCardPayment"/>
<meta-value value="CASH" class="CashPayment"/>
<meta-value value="CHEQUE" class="ChequePayment"/>
<column name="PAYMENT_CLASS"/>
<column name="PAYMENT_ID"/>

</any>

8.1.7. Mixing implicit polymorphism with other inheritance mappings

Inheritance Mapping

NHibernate 5.1 82

There is one further thing to notice about this mapping. Since the subclasses are each mapped in their own
<class> element (and since IPayment is just an interface), each of the subclasses could easily be part of another
table-per-class or table-per-subclass inheritance hierarchy! (And you can still use polymorphic queries against
the IPayment interface.)

<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="Id" type="Int64" column="CREDIT_PAYMENT_ID">

<generator class="native"/>
</id>
<discriminator column="CREDIT_CARD" type="String"/>
<property name="Amount" column="CREDIT_AMOUNT"/>
...
<subclass name="MasterCardPayment" discriminator-value="MDC"/>
<subclass name="VisaPayment" discriminator-value="VISA"/>

</class>

<class name="NonelectronicTransaction" table="NONELECTRONIC_TXN">
<id name="Id" type="Int64" column="TXN_ID">

<generator class="native"/>
</id>
...
<joined-subclass name="CashPayment" table="CASH_PAYMENT">

<key column="PAYMENT_ID"/>
<property name="Amount" column="CASH_AMOUNT"/>
...

</joined-subclass>
<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">

<key column="PAYMENT_ID"/>
<property name="Amount" column="CHEQUE_AMOUNT"/>
...

</joined-subclass>
</class>

Once again, we don't mention IPayment explicitly. If we execute a query against the IPayment interface - for
example, from IPayment - NHibernate automatically returns instances of CreditCardPayment (and its sub-
classes, since they also implement IPayment), CashPayment and ChequePayment but not instances of Nonelec-
tronicTransaction.

8.2. Limitations

There are certain limitations to the "implicit polymorphism" approach to the table per concrete-class mapping
strategy. There are somewhat less restrictive limitations to <union-subclass> mappings.

The following table shows the limitations of table per concrete-class mappings, and of implicit polymorphism,
in NHibernate.

Table 8.1. Features of inheritance mappings

Inherit-
ance
strategy

Poly-
morphic
many-
to-one

Poly-
morphic
one-to-one

Poly-
morphic
one-
to-many

Poly-
morphic
many-
to-many

Poly-
morphic
Load()/Get

()

Poly-
morphic
queries

Poly-
morphic
joins

table per
class-
hierarchy

<many-to-o

ne>

<one-to-on

e>

<one-to-ma

ny>

<many-to-m

any>

s.Get<IPay

ment>(id)

from IPay-

ment p

from Order

o join

o.Payment

p

table per <many-to-o <one-to-on <one-to-ma <many-to-m s.Get<IPay from IPay- from Order

Inheritance Mapping

NHibernate 5.1 83

Inherit-
ance
strategy

Poly-
morphic
many-
to-one

Poly-
morphic
one-to-one

Poly-
morphic
one-
to-many

Poly-
morphic
many-
to-many

Poly-
morphic
Load()/Get

()

Poly-
morphic
queries

Poly-
morphic
joins

subclass ne> e> ny> any> ment>(id) ment p o join

o.Payment

p

table per
concrete-
class
(union-subc
lass)

<many-to-o

ne>

<one-to-on

e>

<one-to-ma

ny> (for
in-

verse="tru

e" only)

<many-to-m

any>

s.Get<IPay

ment>(id)

from IPay-

ment p

from Order

o join

o.Payment

p

table per
concrete
class
(implicit
polymorph-
ism)

<any> not suppor-
ted

not suppor-
ted

<many-to-a

ny>

use a query from IPay-

ment p

not suppor-
ted

Inheritance Mapping

NHibernate 5.1 84

Chapter 9. Manipulating Persistent Data

9.1. Creating a persistent object

An object (entity instance) is either transient or persistent with respect to a particular ISession. Newly instanti-
ated objects are, of course, transient. The session offers services for saving (ie. persisting) transient instances:

DomesticCat fritz = new DomesticCat();
fritz.Color = Color.Ginger;
fritz.Sex = 'M';
fritz.Name = "Fritz";
long generatedId = (long) sess.Save(fritz);

DomesticCat pk = new DomesticCat();
pk.Color = Color.Tabby;
pk.Sex = 'F';
pk.Name = "PK";
pk.Kittens = new HashSet<Cat>();
pk.AddKitten(fritz);
sess.Save(pk, 1234L);

The single-argument Save() generates and assigns a unique identifier to fritz. The two-argument form at-
tempts to persist pk using the given identifier. We generally discourage the use of the two-argument form since
it may be used to create primary keys with business meaning.

Associated objects may be made persistent in any order you like unless you have a NOT NULL constraint upon a
foreign key column. There is never a risk of violating foreign key constraints. However, you might violate a
NOT NULL constraint if you Save() the objects in the wrong order.

9.2. Loading an object

The Load() methods of ISession give you a way to retrieve a persistent instance if you already know its identi-
fier. One version takes a class object and will load the state into a newly instantiated object. The second version
allows you to supply an instance into which the state will be loaded. The form which takes an instance is only
useful in special circumstances (DIY instance pooling etc.)

Cat fritz = sess.Load<Cat>(generatedId);

long pkId = 1234;
DomesticCat pk = sess.Load<DomesticCat>(pkId);

Cat cat = new DomesticCat();
// load pk's state into cat
sess.Load(cat, pkId);
var kittens = cat.Kittens;

Note that Load() will throw an unrecoverable exception if there is no matching database row. If the class is
mapped with a proxy, Load() returns an object that is an uninitialized proxy and does not actually hit the data-
base until you invoke a method of the object. This behaviour is very useful if you wish to create an association
to an object without actually loading it from the database.

If you are not certain that a matching row exists, you should use the Get() method, which hits the database im-
mediately and returns null if there is no matching row.

NHibernate 5.1 85

Cat cat = sess.Get<Cat>(id);
if (cat==null) {

cat = new Cat();
sess.Save(cat, id);

}
return cat;

You may also load an objects using an SQL SELECT ... FOR UPDATE. See the next section for a discussion of
NHibernate LockModes.

Cat cat = sess.Get<Cat>(id, LockMode.Upgrade);

Note that any associated instances or contained collections are not selected FOR UPDATE.

It is possible to re-load an object and all its collections at any time, using the Refresh() method. This is useful
when database triggers are used to initialize some of the properties of the object.

sess.Save(cat);
sess.Flush(); //force the SQL INSERT
sess.Refresh(cat); //re-read the state (after the trigger executes)

An important question usually appears at this point: How much does NHibernate load from the database and
how many SQL SELECTs will it use? This depends on the fetching strategy and is explained in Section 20.1,
“Fetching strategies”.

9.3. Querying

If you don't know the identifier(s) of the object(s) you are looking for, use the CreateQuery() method of ISes-
sion. NHibernate supports a simple but powerful object oriented query language.

IList<Cat> cats = sess
.CreateQuery("from Cat as cat where cat.Birthdate = ?")
.SetDateTime(0, date)
.List<Cat>();

var mates = sess
.CreateQuery("select mate from Cat as cat join cat.Mate as mate " +

"where cat.name = ?")
.SetString(0, name)
.List<Cat>();

var cats = sess
.CreateQuery("from Cat as cat where cat.Mate.Birthdate is null")
.List<Cat>();

var moreCats = sess
.CreateQuery("from Cat as cat where " +

"cat.Name = 'Fritz' or cat.id = ? or cat.id = ?")
.SetInt64(0, id1)
.SetParameter(1, id2, NHibernateUtil.Int64)
.List<Cat>();

var mates = sess
.CreateQuery("from Cat as cat where cat.Mate = ?")
.SetEntity(0, izi)
.List<Cat>();

);

var problems = sess
.CreateQuery("from GoldFish as fish " +

"where fish.Birthday > fish.Deceased or fish.Birthday is null")
.List<GoldFish>();

Manipulating Persistent Data

NHibernate 5.1 86

These given Set parameters are used to bind the given values to the ? query placeholders (which map to input
parameters of an ADO.NET DbCommand). Just as in ADO.NET, you should use this binding mechanism in pref-
erence to string manipulation.

The NHibernateUtil class defines a number of static methods and constants, providing access to most of the
built-in types, as instances of NHibernate.Type.IType.

If you expect your query to return a very large number of objects, but you don't expect to use them all, you
might get better performance from the Enumerable() method, which return a IEnumerable. The iterator will
load objects on demand, using the identifiers returned by an initial SQL query (n+1 selects total).

// fetch ids
IEnumerable<Qux> en = sess

.CreateQuery("from eg.Qux q order by q.Likeliness")

.Enumerable<Qux>();
foreach (Qux qux in en)
{

// something we couldnt express in the query
if (qux.CalculateComplicatedAlgorithm()) {

// dont need to process the rest
break;

}
}

The Enumerable() method also performs better if you expect that many of the objects are already loaded and
cached by the session, or if the query results contain the same objects many times. (When no data is cached or
repeated, CreateQuery() is almost always faster.) Here is an example of a query that should be called using
Enumerable():

var en = sess
.CreateQuery(

"select customer, product " +
"from Customer customer, " +
"Product product " +
"join customer.Purchases purchase " +
"where product = purchase.Product")

.Enumerable<object[]>();

Calling the previous query using CreateQuery() would return a very large ADO.NET result set containing the
same data many times.

NHibernate queries sometimes return tuples of objects, in which case each tuple is returned as an array:

var foosAndBars = sess
.CreateQuery(

"select foo, bar from Foo foo, Bar bar " +
"where bar.Date = foo.Date")

.Enumerable<object[]>();
foreach (object[] tuple in foosAndBars)
{

Foo foo = tuple[0]; Bar bar = tuple[1];
....

}

9.3.1. Scalar queries

Queries may specify a property of a class in the select clause. They may even call SQL aggregate functions.
Properties or aggregates are considered "scalar" results.

Manipulating Persistent Data

NHibernate 5.1 87

var results = sess
.CreateQuery(

"select cat.Color, min(cat.Birthdate), count(cat) from Cat cat " +
"group by cat.Color")

.Enumerable<object[]>();
foreach (object[] row in results)
{

Color type = (Color) row[0];
DateTime oldest = (DateTime) row[1];
int count = (int) row[2];
.....

}

var en = sess
.CreateQuery(

"select cat.Type, cat.Birthdate, cat.Name from DomesticCat cat")
.Enumerable<object[]>();

IList<object[]> list = sess
.CreateQuery("select cat, cat.Mate.Name from DomesticCat cat")
.List<object[]>();

9.3.2. The IQuery interface

If you need to specify bounds upon your result set (the maximum number of rows you want to retrieve and / or
the first row you want to retrieve) you should obtain an instance of NHibernate.IQuery:

IQuery q = sess.CreateQuery("from DomesticCat cat");
q.SetFirstResult(20);
q.SetMaxResults(10);
var cats = q.List<Cat>();

You may even define a named query in the mapping document. (Remember to use a CDATA section if your
query contains characters that could be interpreted as markup.)

<query name="Eg.DomesticCat.by.name.and.minimum.weight"><![CDATA[
from Eg.DomesticCat as cat

where cat.Name = ?
and cat.Weight > ?

]]></query>

IQuery q = sess.GetNamedQuery("Eg.DomesticCat.by.name.and.minimum.weight");
q.SetString(0, name);
q.SetInt32(1, minWeight);
var cats = q.List<Cat>();

Named queries are by default validated at startup time, allowing to catch errors more easily than having to test
all the application features using HQL queries. In case of validation errors, the details of failing queries are
logged and a validation error is raised.

Named queries accepts a number of attributes matching settings available on the IQuery interface.

• flush-mode - override the session flush mode just for this query.
• cacheable - allow the query results to be cached by the second level cache. See Chapter 26, NHibern-

ate.Caches.
• cache-region - specify the cache region of the query.
• cache-mode - specify the cache mode of the query.
• fetch-size - set a fetch size for the underlying ADO query.
• timeout - set the query timeout in seconds.

Manipulating Persistent Data

NHibernate 5.1 88

• read-only - true switches yielded entities to read-only. See Chapter 10, Read-only entities.
• comment - add a custom comment to the generated SQL.

The query interface supports the use of named parameters. Named parameters are identifiers of the form :name

in the query string. There are methods on IQuery for binding values to named or positional parameters.
NHibernate numbers parameters from zero. The advantages of named parameters are:

• named parameters are insensitive to the order they occur in the query string
• they may occur multiple times in the same query
• they are self-documenting

//named parameter (preferred)
IQuery q = sess.CreateQuery("from DomesticCat cat where cat.Name = :name");
q.SetString("name", "Fritz");
var cats = q.Enumerable<DomesticCat>();

//positional parameter
IQuery q = sess.CreateQuery("from DomesticCat cat where cat.Name = ?");
q.SetString(0, "Izi");
var cats = q.Enumerable<DomesticCat>();

//named parameter list
var names = new List<string>();
names.Add("Izi");
names.Add("Fritz");
IQuery q = sess.CreateQuery("from DomesticCat cat where cat.Name in (:namesList)");
q.SetParameterList("namesList", names);
var cats = q.List<DomesticCat>();

9.3.3. Filtering collections

A collection filter is a special type of query that may be applied to a persistent collection or array. The query
string may refer to this, meaning the current collection element.

var blackKittens = session
.CreateFilter(pk.Kittens, "where this.Color = ?")
.SetEnum(0, Color.Black)
.List<Cat>();

The returned collection is considered a bag.

Observe that filters do not require a from clause (though they may have one if required). Filters are not limited
to returning the collection elements themselves.

var blackKittenMates = session
.CreateFilter(pk.Kittens,

"select this.Mate where this.Color = Eg.Color.Black")
.List<Cat>();

9.3.4. Criteria queries

HQL is extremely powerful but some people prefer to build queries dynamically, using an object oriented API,
rather than embedding strings in their .NET code. For these people, NHibernate provides an intuitive ICriter-

ia query API.

ICriteria crit = session.CreateCriteria<Cat>();
crit.Add(Expression.Eq("color", Eg.Color.Black));
crit.SetMaxResults(10);

Manipulating Persistent Data

NHibernate 5.1 89

var cats = crit.List<Cat>();

If you are uncomfortable with SQL-like syntax, this is perhaps the easiest way to get started with NHibernate.
This API is also more extensible than HQL. Applications might provide their own implementations of the
ICriterion interface.

9.3.5. Queries in native SQL

You may express a query in SQL, using CreateSQLQuery(). You must enclose SQL aliases in braces.

var cats = session
.CreateSQLQuery("SELECT {cat.*} FROM CAT {cat} WHERE ROWNUM<10")
.AddEntity("cat", typeof(Cat))
.List<Cat>();

var cats = session
.CreateSQLQuery(

"SELECT {cat}.ID AS {cat.Id}, {cat}.SEX AS {cat.Sex}, " +
"{cat}.MATE AS {cat.Mate}, {cat}.SUBCLASS AS {cat.class}, ... " +

"FROM CAT {cat} WHERE ROWNUM<10")
.AddEntity("cat", typeof(Cat))
.List<Cat>()

SQL queries may contain named and positional parameters, just like NHibernate queries.

9.4. Updating objects

9.4.1. Updating in the same ISession

Transactional persistent instances (ie. objects loaded, saved, created or queried by the ISession) may be ma-
nipulated by the application and any changes to persistent state will be persisted when the ISession is flushed
(discussed later in this chapter). So the most straightforward way to update the state of an object is to Load() it,
and then manipulate it directly, while the ISession is open:

DomesticCat cat = sess.Load<DomesticCat>(69L);
cat.Name = "PK";
sess.Flush(); // changes to cat are automatically detected and persisted

Sometimes this programming model is inefficient since it would require both an SQL SELECT (to load an ob-
ject) and an SQL UPDATE (to persist its updated state) in the same session. Therefore NHibernate offers an al-
ternate approach.

9.4.2. Updating detached objects

Many applications need to retrieve an object in one transaction, send it to the UI layer for manipulation, then
save the changes in a new transaction. (Applications that use this kind of approach in a high-concurrency envir-
onment usually use versioned data to ensure transaction isolation.) This approach requires a slightly different
programming model to the one described in the last section. NHibernate supports this model by providing the
method ISession.Update().

// in the first session
Cat cat = firstSession.Load<Cat>(catId);
Cat potentialMate = new Cat();

Manipulating Persistent Data

NHibernate 5.1 90

firstSession.Save(potentialMate);

// in a higher tier of the application
cat.Mate = potentialMate;

// later, in a new session
secondSession.Update(cat); // update cat
secondSession.Update(mate); // update mate

If the Cat with identifier catId had already been loaded by secondSession when the application tried to update
it, an exception would have been thrown.

The application should individually Update() transient instances reachable from the given transient instance if
and only if it wants their state also updated. (Except for lifecycle objects, discussed later.)

NHibernate users have requested a general purpose method that either saves a transient instance by generating a
new identifier or update the persistent state associated with its current identifier. The SaveOrUpdate() method
now implements this functionality.

NHibernate distinguishes "new" (unsaved) instances from "existing" (saved or loaded in a previous session) in-
stances by the value of their identifier (or version, or timestamp) property. The unsaved-value attribute of the
<id> (or <version>, or <timestamp>) mapping specifies which values should be interpreted as representing a
"new" instance.

<id name="Id" type="Int64" column="uid" unsaved-value="0">
<generator class="hilo"/>

</id>

The allowed values of unsaved-value are:

• any - always save
• none - always update
• null - save when identifier is null
• valid identifier value - save when identifier is null or the given value
• undefined - if set for version or timestamp, then identifier check is used

If unsaved-value is not specified for a class, NHibernate will attempt to guess it by creating an instance of the
class using the no-argument constructor and reading the property value from the instance.

// in the first session
Cat cat = firstSession.Load<Cat>(catID);

// in a higher tier of the application
Cat mate = new Cat();
cat.Mate = mate;

// later, in a new session
secondSession.SaveOrUpdate(cat); // update existing state (cat has a non-null id)
secondSession.SaveOrUpdate(mate); // save the new instance (mate has a null id)

The usage and semantics of SaveOrUpdate() seems to be confusing for new users. Firstly, so long as you are
not trying to use instances from one session in another new session, you should not need to use Update() or
SaveOrUpdate(). Some whole applications will never use either of these methods.

Usually Update() or SaveOrUpdate() are used in the following scenario:

• the application loads an object in the first session
• the object is passed up to the UI tier
• some modifications are made to the object

Manipulating Persistent Data

NHibernate 5.1 91

• the object is passed back down to the business logic tier
• the application persists these modifications by calling Update() in a second session

SaveOrUpdate() does the following:

• if the object is already persistent in this session, do nothing
• if the object has no identifier property, Save() it
• if the object's identifier matches the criteria specified by unsaved-value, Save() it
• if the object is versioned (version or timestamp), then the version will take precedence to identifier check,

unless the versions unsaved-value="undefined" (default value)
• if another object associated with the session has the same identifier, throw an exception

The last case can be avoided by using Merge(Object o). This method copies the state of the given object onto
the persistent object with the same identifier. If there is no persistent instance currently associated with the ses-
sion, it will be loaded. The method returns the persistent instance. If the given instance is unsaved or does not
exist in the database, NHibernate will save it and return it as a newly persistent instance. Otherwise, the given
instance does not become associated with the session. In most applications with detached objects, you need
both methods, SaveOrUpdate() and Merge().

9.4.3. Reattaching detached objects

The Lock() method allows the application to re-associate an unmodified object with a new session.

//just reassociate:
sess.Lock(fritz, LockMode.None);
//do a version check, then reassociate:
sess.Lock(izi, LockMode.Read);
//do a version check, using SELECT ... FOR UPDATE, then reassociate:
sess.Lock(pk, LockMode.Upgrade);

9.5. Deleting persistent objects

ISession.Delete() will remove an object's state from the database. Of course, your application might still
hold a reference to it. So it's best to think of Delete() as making a persistent instance transient.

sess.Delete(cat);

You may also delete many objects at once by passing a NHibernate query string to Delete().

sess.Delete("from Cat");

You may now delete objects in any order you like, without risk of foreign key constraint violations. Of course,
it is still possible to violate a NOT NULL constraint on a foreign key column by deleting objects in the wrong or-
der.

9.6. Flush

From time to time the ISession will execute the SQL statements needed to synchronize the ADO.NET connec-
tion's state with the state of objects held in memory. This process, flush, occurs by default at the following
points

• from some invocations of IQuery methods such as List or Enumerable, and from similar methods of other

Manipulating Persistent Data

NHibernate 5.1 92

querying API.
• from NHibernate.ITransaction.Commit()

• from ISession.Flush()

The SQL statements are issued in the following order

1. all entity insertions, in the same order the corresponding objects were saved using ISession.Save()

2. all entity updates
3. all collection deletions
4. all collection element deletions, updates and insertions
5. all collection insertions
6. all entity deletions, in the same order the corresponding objects were deleted using ISession.Delete()

(An exception is that objects using identity ID generation are inserted when they are saved.)

Except when you explicitly Flush(), there are absolutely no guarantees about when the Session executes the
ADO.NET calls, only the order in which they are executed. However, NHibernate does guarantee that the quer-
ies methods will never return stale data; nor will they return the wrong data.

It is possible to change the default behavior so that flush occurs less frequently. The FlushMode class defines
three different modes: only flush at commit time (and only when the NHibernate ITransaction API is used, or
inside a transaction scope), flush automatically using the explained routine (will only work inside an explicit
NHibernate ITransaction or inside a transaction scope), or never flush unless Flush() is called explicitly. The
last mode is useful for long running units of work, where an ISession is kept open and disconnected for a long
time (see Section 11.4, “Optimistic concurrency control”).

sess = sf.OpenSession();
using (ITransaction tx = sess.BeginTransaction())
{

// allow queries to return stale state
sess.FlushMode = FlushMode.Commit;
Cat izi = sess.Load<Cat>(id);
izi.Name = "iznizi";
// execute some queries....
sess.CreateQuery("from Cat as cat left outer join cat.Kittens kitten")

.List<object[]>();
// change to izi is not flushed!
...
tx.Commit(); // flush occurs

}

9.7. Checking dirtiness

ISession.IsDirty() will return whether the session hold any pending change to flush or not. Be cautious
when using this method, its default implementation may have the following effects:

• Dirty checks all the loaded entities. NHibernate does not instrument the entities for being notified of
changes done on loaded ones. Instead, it stores their initial state and compare them to it. If session has
loaded a lot of entities, the dirty checking will have a significant impact.

• Triggers pending cascade operations. This includes any pending Save of, by example, children added to a
collection having the Save cascade enabled. Depending on the entities ID generators (see Section 5.1.5.1,
“generator”), this may trigger calls to the database, or even entity insertions if they are using the identity

generator.

9.8. Ending a Session

Manipulating Persistent Data

NHibernate 5.1 93

Ending a session involves four distinct phases:

• flush the session
• commit the transaction
• close the session
• handle exceptions

9.8.1. Flushing the Session

If you happen to be using the ITransaction API, you don't need to worry about this step. It will be performed
implicitly when the transaction is committed. Otherwise you should call ISession.Flush() to ensure that all
changes are synchronized with the database.

9.8.2. Committing the database transaction

If you are using the NHibernate ITransaction API, this looks like:

tx.Commit(); // flush the session and commit the transaction

If you are managing ADO.NET transactions yourself you should manually Commit() the ADO.NET transac-
tion.

sess.Flush();
currentTransaction.Commit();

If you decide not to commit your changes:

tx.Rollback(); // rollback the transaction

or:

currentTransaction.Rollback();

If you rollback the transaction you should immediately close and discard the current session to ensure that
NHibernate's internal state is consistent.

9.8.3. Closing the ISession

A call to ISession.Close() marks the end of a session. The main implication of Close() is that the ADO.NET
connection will be relinquished by the session.

tx.Commit();
sess.Close();

sess.Flush();
currentTransaction.Commit();
sess.Close();

If you provided your own connection, Close() returns a reference to it, so you can manually close it or return it
to the pool. Otherwise Close() returns it to the pool.

Manipulating Persistent Data

NHibernate 5.1 94

9.9. Exception handling

NHibernate use might lead to exceptions, usually HibernateException. This exception can have a nested inner
exception (the root cause), use the InnerException property to access it.

If the ISession throws an exception you should immediately rollback the transaction, call ISession.Close()
and discard the ISession instance. Certain methods of ISession will not leave the session in a consistent state.

For exceptions thrown by the data provider while interacting with the database, NHibernate will wrap the error
in an instance of ADOException. The underlying exception is accessible by calling ADOExcep-

tion.InnerException. NHibernate converts the DbException into an appropriate ADOException subclass using
the ISQLExceptionConverter attached to the SessionFactory. By default, the ISQLExceptionConverter is
defined by the configured dialect; however, it is also possible to plug in a custom implementation (see the api-
docs for the ISQLExceptionConverter class for details).

The following exception handling idiom shows the typical case in NHibernate applications:

using (ISession sess = factory.OpenSession())
using (ITransaction tx = sess.BeginTransaction())
{

// do some work
...
tx.Commit();

}

Or, when manually managing ADO.NET transactions:

ISession sess = factory.openSession();
try
{

// do some work
...
sess.Flush();
currentTransaction.Commit();

}
catch (Exception e)
{

currentTransaction.Rollback();
throw;

}
finally
{

sess.Close();
}

9.10. Lifecycles and object graphs

To save or update all objects in a graph of associated objects, you must either

• Save(), SaveOrUpdate() or Update() each individual object OR
• map associated objects using cascade="all" or cascade="save-update".

Likewise, to delete all objects in a graph, either

• Delete() each individual object OR
• map associated objects using cascade="all", cascade="all-delete-orphan" or cascade="delete".

Recommendation:

Manipulating Persistent Data

NHibernate 5.1 95

• If the child object's lifespan is bounded by the lifespan of the of the parent object make it a lifecycle object
by specifying cascade="all".

• Otherwise, Save() and Delete() it explicitly from application code. If you really want to save yourself
some extra typing, use cascade="save-update" and explicit Delete().

Mapping an association (many-to-one, one-to-one or collection) with cascade="all" marks the association as a
parent/child style relationship where save/update/deletion of the parent results in save/update/deletion of the
child(ren). Furthermore, a mere reference to a child from a persistent parent will result in save / update of the
child. The metaphor is incomplete, however. A child which becomes unreferenced by its parent is not automat-
ically deleted, except in the cases of <one-to-many> and <one-to-one> associations that have been mapped
with cascade="all-delete-orphan" or cascade="delete-orphan". The precise semantics of cascading opera-
tions are as follows:

• If a parent is saved, all children are passed to SaveOrUpdate()

• If a parent is passed to Update() or SaveOrUpdate(), all children are passed to SaveOrUpdate()

• If a transient child becomes referenced by a persistent parent, it is passed to SaveOrUpdate()

• If a parent is deleted, all children are passed to Delete()

• If a transient child is dereferenced by a persistent parent, nothing special happens (the application should
explicitly delete the child if necessary) unless cascade="all-delete-orphan" or cas-

cade="delete-orphan", in which case the "orphaned" child is deleted.

NHibernate does not fully implement "persistence by reachability", which would imply (inefficient) persistent
garbage collection. However, due to popular demand, NHibernate does support the notion of entities becoming
persistent when referenced by another persistent object. Associations marked cascade="save-update" behave
in this way. If you wish to use this approach throughout your application, it's easier to specify the default-

cascade attribute of the <hibernate-mapping> element.

9.11. Interceptors

The IInterceptor interface provides callbacks from the session to the application allowing the application to
inspect and / or manipulate properties of a persistent object before it is saved, updated, deleted or loaded. One
possible use for this is to track auditing information. For example, the following IInterceptor automatically
sets the CreateTimestamp when an IAuditable is created and updates the LastUpdateTimestamp property
when an IAuditable is updated.

using System;
using NHibernate.Type;

namespace NHibernate.Test
{

[Serializable]
public class AuditInterceptor : IInterceptor
{

private int updates;
private int creates;

public void OnDelete(object entity,
object id,
object[] state,
string[] propertyNames,
IType[] types)

{
// do nothing

}

public boolean OnFlushDirty(object entity,
object id,
object[] currentState,

Manipulating Persistent Data

NHibernate 5.1 96

object[] previousState,
string[] propertyNames,
IType[] types) {

if (entity is IAuditable)
{

updates++;
for (int i=0; i < propertyNames.Length; i++)
{

if ("LastUpdateTimestamp" == propertyNames[i])
{

currentState[i] = DateTime.Now;
return true;

}
}

}
return false;

}

public boolean OnLoad(object entity,
object id,
object[] state,
string[] propertyNames,
IType[] types)

{
return false;

}

public boolean OnSave(object entity,
object id,
object[] state,
string[] propertyNames,
IType[] types)

{
if (entity is IAuditable)
{

creates++;
for (int i=0; i<propertyNames.Length; i++)
{

if ("CreateTimestamp" == propertyNames[i])
{

state[i] = DateTime.Now;
return true;

}
}

}
return false;

}

public void PostFlush(ICollection entities)
{

Console.Out.WriteLine("Creations: {0}, Updates: {1}", creates, updates);
}

public void PreFlush(ICollection entities) {
updates=0;
creates=0;

}

......

......
}

}

The interceptor would be specified when a session is created.

ISession session = sf.OpenSession(new AuditInterceptor());

Manipulating Persistent Data

NHibernate 5.1 97

You may also set an interceptor on a global level, using the Configuration:

new Configuration().SetInterceptor(new AuditInterceptor());

9.12. Metadata API

NHibernate requires a very rich meta-level model of all entity and value types. From time to time, this model is
very useful to the application itself. For example, the application might use NHibernate's metadata to imple-
ment a "smart" deep-copy algorithm that understands which objects should be copied (eg. mutable value types)
and which should not (eg. immutable value types and, possibly, associated entities).

NHibernate exposes metadata via the IClassMetadata and ICollectionMetadata interfaces and the IType

hierarchy. Instances of the metadata interfaces may be obtained from the ISessionFactory.

Cat fritz =;
IClassMetadata catMeta = sessionfactory.GetClassMetadata(typeof(Cat));
long id = (long) catMeta.GetIdentifier(fritz);
object[] propertyValues = catMeta.GetPropertyValues(fritz);
string[] propertyNames = catMeta.PropertyNames;
IType[] propertyTypes = catMeta.PropertyTypes;

// get an dictionary of all properties which are not collections or associations
// TODO: what about components?

var namedValues = new Dictionary<string, object>();
for (int i = 0; i < propertyNames.Length; i++)
{

if (!propertyTypes[i].IsEntityType && !propertyTypes[i].IsCollectionType)
{

namedValues[propertyNames[i]] = propertyValues[i];
}

}

Manipulating Persistent Data

NHibernate 5.1 98

Chapter 10. Read-only entities

Important

NHibernate's treatment of read-only entities may differ from what you may have encountered else-
where. Incorrect usage may cause unexpected results.

When an entity is read-only:

• NHibernate does not dirty-check the entity's simple properties or single-ended associations;

• NHibernate will not update simple properties or updatable single-ended associations;

• NHibernate will not update the version of the read-only entity if only simple properties or single-ended up-
datable associations are changed;

In some ways, NHibernate treats read-only entities the same as entities that are not read-only:

• NHibernate cascades operations to associations as defined in the entity mapping.

• NHibernate updates the version if the entity has a collection with changes that dirties the entity;

• A read-only entity can be deleted.

Even if an entity is not read-only, its collection association can be affected if it contains a read-only entity.

For details about the affect of read-only entities on different property and association types, see Section 10.2,
“Read-only affect on property type”.

For details about how to make entities read-only, see Section 10.1, “Making persistent entities read-only”

NHibernate does some optimizing for read-only entities:

• It saves execution time by not dirty-checking simple properties or single-ended associations.

• It saves memory by deleting database snapshots.

10.1. Making persistent entities read-only

Only persistent entities can be made read-only. Transient and detached entities must be put in persistent state
before they can be made read-only.

NHibernate provides the following ways to make persistent entities read-only:

• you can map an entity class as immutable; when an entity of an immutable class is made persistent,
NHibernate automatically makes it read-only. see Section 10.1.1, “Entities of immutable classes” for details

• you can change a default so that entities loaded into the session by NHibernate are automatically made
read-only; see Section 10.1.2, “Loading persistent entities as read-only” for details

• you can make an HQL query or criteria read-only so that entities loaded when the query or criteria executes,

NHibernate 5.1 99

or iterates, are automatically made read-only; see Section 10.1.3, “Loading read-only entities from an HQL
query/criteria” for details

• you can make a persistent entity that is already in the in the session read-only; see Section 10.1.4, “Making
a persistent entity read-only” for details

10.1.1. Entities of immutable classes

When an entity instance of an immutable class is made persistent, NHibernate automatically makes it read-
only.

An entity of an immutable class can created and deleted the same as an entity of a mutable class.

NHibernate treats a persistent entity of an immutable class the same way as a read-only persistent entity of a
mutable class. The only exception is that NHibernate will not allow an entity of an immutable class to be
changed so it is not read-only.

10.1.2. Loading persistent entities as read-only

Note

Entities of immutable classes are automatically loaded as read-only.

To change the default behavior so NHibernate loads entity instances of mutable classes into the session and
automatically makes them read-only, call:

Session.DefaultReadOnly = true;

To change the default back so entities loaded by NHibernate are not made read-only, call:

Session.DefaultReadOnly = false;

You can determine the current setting by using the property:

Session.DefaultReadOnly;

If Session.DefaultReadOnly property returns true, entities loaded by the following are automatically made
read-only:

• Session.Load() and Session.Load<T>

• Session.Get() and Session.Get<T>

• Session.Merge()

• executing, or iterating HQL queries and criteria; to override this setting for a particular HQL query or criter-
ia see Section 10.1.3, “Loading read-only entities from an HQL query/criteria”

Changing this default has no effect on:

• persistent entities already in the session when the default was changed

Read-only entities

NHibernate 5.1 100

• persistent entities that are refreshed via Session.Refresh(); a refreshed persistent entity will only be read-
only if it was read-only before refreshing

• persistent entities added by the application via Session.Persist(), Session.Save(), Session.Update()
and Session.SaveOrUpdate()

10.1.3. Loading read-only entities from an HQL query/criteria

Note

Entities of immutable classes are automatically loaded as read-only.

If Session.DefaultReadOnly returns false (the default) when an HQL query or criteria executes, then entities
and proxies of mutable classes loaded by the query will not be read-only.

You can override this behavior so that entities and proxies loaded by an HQL query or criteria are automatically
made read-only.

For an HQL query, call:

Query.SetReadOnly(true);

Query.SetReadOnly(true) must be called before Query.List(), Query.UniqueResult(), or
Query.Enumerable()

For an HQL criteria, call:

Criteria.SetReadOnly(true);

Criteria.SetReadOnly(true) must be called before Criteria.List(), or Criteria.UniqueResult()

Entities and proxies that exist in the session before being returned by an HQL query or criteria are not affected.

Uninitialized persistent collections returned by the query are not affected. Later, when the collection is initial-
ized, entities loaded into the session will be read-only if Session.DefaultReadOnly returns true.

Using Query.SetReadOnly(true) or Criteria.SetReadOnly(true) works well when a single HQL query or
criteria loads all the entities and initializes all the proxies and collections that the application needs to be read-
only.

When it is not possible to load and initialize all necessary entities in a single query or criteria, you can tempor-
arily change the session default to load entities as read-only before the query is executed. Then you can expli-
citly initialize proxies and collections before restoring the session default.

using (ISession session = factory.OpenSession())
using (ITransaction tx = session.BeginTransaction())
{

session.DefaultReadOnly = true;
Contract contract = session

.CreateQuery("from Contract where CustomerName = 'Sherman'")

.UniqueResult<Contract>();
NHibernate.Initialize(contract.Plan);
NHibernate.Initialize(contract.Variations);
NHibernate.Initialize(contract.Notes);
session.DefaultReadOnly = false;
...
tx.Commit();

}

Read-only entities

NHibernate 5.1 101

If Session.DefaultReadOnly returns true, then you can use Query.SetReadOnly(false) and Criter-
ia.SetReadOnly(false) to override this session setting and load entities that are not read-only.

10.1.4. Making a persistent entity read-only

Note

Persistent entities of immutable classes are automatically made read-only.

To make a persistent entity or proxy read-only, call:

Session.SetReadOnly(entityOrProxy, true)

To change a read-only entity or proxy of a mutable class so it is no longer read-only, call:

Session.SetReadOnly(entityOrProxy, false)

Important

When a read-only entity or proxy is changed so it is no longer read-only, NHibernate assumes that the
current state of the read-only entity is consistent with its database representation. If this is not true, then
any non-flushed changes made before or while the entity was read-only, will be ignored.

To throw away non-flushed changes and make the persistent entity consistent with its database representation,
call:

Session.Refresh(entity);

To flush changes made before or while the entity was read-only and make the database representation consist-
ent with the current state of the persistent entity:

// evict the read-only entity so it is detached
session.Evict(entity);

// make the detached entity (with the non-flushed changes) persistent
session.Update(entity);

// now entity is no longer read-only and its changes can be flushed
s.Flush();

10.2. Read-only affect on property type

The following table summarizes how different property types are affected by making an entity read-only.

Table 10.1. Affect of read-only entity on property types

Property/Association Type Changes flushed to DB?

Simple

(Section 10.2.1, “Simple properties”)

no*

Unidirectional one-to-one no*

Read-only entities

NHibernate 5.1 102

Property/Association Type Changes flushed to DB?

Unidirectional many-to-one

(Section 10.2.2.1, “Unidirectional one-to-one and
many-to-one”)

no*

Unidirectional one-to-many

Unidirectional many-to-many

(Section 10.2.2.2, “Unidirectional one-to-many and
many-to-many”)

yes

yes

Bidirectional one-to-one

(Section 10.2.3.1, “Bidirectional one-to-one”)

only if the owning entity is not read-only*

Bidirectional one-to-many/many-to-one

inverse collection

non-inverse collection

(Section 10.2.3.2, “Bidirectional one-
to-many/many-to-one”)

only added/removed entities that are not read-only*

yes

Bidirectional many-to-many

(Section 10.2.3.3, “Bidirectional many-to-many”)

yes

* Behavior is different when the entity having the property/association is read-only, compared to when it is not
read-only.

10.2.1. Simple properties

When a persistent object is read-only, NHibernate does not dirty-check simple properties.

NHibernate will not synchronize simple property state changes to the database. If you have automatic version-
ing, NHibernate will not increment the version if any simple properties change.

using (ISession session = factory.OpenSession())
using (ITransaction tx = session.BeginTransaction())
{

// get a contract and make it read-only
Contract contract = session.Get<Contract>(contractId);
session.SetReadOnly(contract, true);

// contract.CustomerName is "Sherman"
contract.CustomerName = "Yogi";
tx.Commit();

tx = session.BeginTransaction();

contract = session.Get<Contract>(contractId);
// contract.CustomerName is still "Sherman"

Read-only entities

NHibernate 5.1 103

...
tx.Commit();

}

10.2.2. Unidirectional associations

10.2.2.1. Unidirectional one-to-one and many-to-one

NHibernate treats unidirectional one-to-one and many-to-one associations in the same way when the owning
entity is read-only.

We use the term unidirectional single-ended association when referring to functionality that is common to uni-
directional one-to-one and many-to-one associations.

NHibernate does not dirty-check unidirectional single-ended associations when the owning entity is read-only.

If you change a read-only entity's reference to a unidirectional single-ended association to null, or to refer to a
different entity, that change will not be flushed to the database.

Note

If an entity is of an immutable class, then its references to unidirectional single-ended associations must
be assigned when that entity is first created. Because the entity is automatically made read-only, these
references can not be updated.

If automatic versioning is used, NHibernate will not increment the version due to local changes to unidirection-
al single-ended associations.

In the following examples, Contract has a unidirectional many-to-one association with Plan. Contract cascades
save and update operations to the association.

The following shows that changing a read-only entity's many-to-one association reference to null has no effect
on the entity's database representation.

// get a contract with an existing plan;
// make the contract read-only and set its plan to null
using (var tx = session.BeginTransaction())
{

Contract contract = session.Get<Contract>(contractId);
session.SetReadOnly(contract, true);
contract.Plan = null;
tx.Commit();

}

// get the same contract
using (var tx = session.BeginTransaction())
{

Contract contract = session.Get<Contract>(contractId);

// contract.Plan still refers to the original plan;

tx.Commit();
}
session.Close();

The following shows that, even though an update to a read-only entity's many-to-one association has no affect
on the entity's database representation, flush still cascades the save-update operation to the locally changed as-
sociation.

Read-only entities

NHibernate 5.1 104

// get a contract with an existing plan;
// make the contract read-only and change to a new plan
Contract contract;
Plan newPlan;
using (var tx = session.BeginTransaction())
{

contract = session.Get<Contract>(contractId);
session.SetReadOnly(contract, true);
newPlan = new Plan("new plan");
contract.Plan = newPlan;
tx.Commit();

}

// get the same contract
using (var tx = session.BeginTransaction())
{

contract = session.Get<Contract>(contractId);
newPlan = session.Get<Plan>(newPlan.Id);

// contract.Plan still refers to the original plan;
// newPlan is non-null because it was persisted when
// the previous transaction was committed;

tx.Commit();
}
session.Close();

10.2.2.2. Unidirectional one-to-many and many-to-many

NHibernate treats unidirectional one-to-many and many-to-many associations owned by a read-only entity the
same as when owned by an entity that is not read-only.

NHibernate dirty-checks unidirectional one-to-many and many-to-many associations;

The collection can contain entities that are read-only, as well as entities that are not read-only.

Entities can be added and removed from the collection; changes are flushed to the database.

If automatic versioning is used, NHibernate will update the version due to changes in the collection if they dirty
the owning entity.

10.2.3. Bidirectional associations

10.2.3.1. Bidirectional one-to-one

If a read-only entity owns a bidirectional one-to-one association:

• NHibernate does not dirty-check the association.

• updates that change the association reference to null or to refer to a different entity will not be flushed to the
database.

• If automatic versioning is used, NHibernate will not increment the version due to local changes to the asso-
ciation.

Note

If an entity is of an immutable class, and it owns a bidirectional one-to-one association, then its refer-
ence must be assigned when that entity is first created. Because the entity is automatically made read-

Read-only entities

NHibernate 5.1 105

only, these references cannot be updated.

When the owner is not read-only, NHibernate treats an association with a read-only entity the same as when the
association is with an entity that is not read-only.

10.2.3.2. Bidirectional one-to-many/many-to-one

A read-only entity has no impact on a bidirectional one-to-many/many-to-one association if:

• the read-only entity is on the one-to-many side using an inverse collection;

• the read-only entity is on the one-to-many side using a non-inverse collection;

• the one-to-many side uses a non-inverse collection that contains the read-only entity

When the one-to-many side uses an inverse collection:

• a read-only entity can only be added to the collection when it is created;

• a read-only entity can only be removed from the collection by an orphan delete or by explicitly deleting the
entity.

10.2.3.3. Bidirectional many-to-many

NHibernate treats bidirectional many-to-many associations owned by a read-only entity the same as when
owned by an entity that is not read-only.

NHibernate dirty-checks bidirectional many-to-many associations.

The collection on either side of the association can contain entities that are read-only, as well as entities that are
not read-only.

Entities are added and removed from both sides of the collection; changes are flushed to the database.

If automatic versioning is used, NHibernate will update the version due to changes in both sides of the collec-
tion if they dirty the entity owning the respective collections.

Read-only entities

NHibernate 5.1 106

Chapter 11. Transactions And Concurrency
NHibernate is not itself a database. It is a lightweight object-relational mapping tool. Transaction management
is delegated to the underlying database connection. If the connection is enlisted with a distributed transaction,
operations performed by the ISession are atomically part of the wider distributed transaction. NHibernate can
be seen as a thin adapter to ADO.NET, adding object-oriented semantics.

11.1. Configurations, Sessions and Factories

An ISessionFactory is an expensive-to-create, threadsafe object intended to be shared by all application
threads. An ISession is an inexpensive, non-threadsafe object that should be used once, for a single business
process, and then discarded. For example, when using NHibernate in an ASP.NET application, pages could ob-
tain an ISessionFactory using:

ISessionFactory sf = Global.SessionFactory;

Each call to a service method could create a new ISession, Flush() it, Commit() its transaction, Close() it and
finally discard it. (The ISessionFactory may also be kept in a static Singleton helper variable.)

We use the NHibernate ITransaction API as discussed previously, a single Commit() of a NHibernate
ITransaction flushes the state and commits any underlying database connection. Transaction scopes can be
used instead, which allows the transaction to be distributed. See Section 11.8, “Transaction scopes
(System.Transactions)”.

NHibernate may be used without managing transactions neither with the ITransaction API nor with transac-
tion scopes. We advise against such a pattern, because this causes each single interaction of the session with the
database to be a transaction on its own. This causes overhead, breaks the unit of work in case of errors during
flushing, and causes some features to be disabled like auto-flush and second level cache. If the application en-
counters locks contention or deadlocks, investigate lowering the isolation level (like enabling read committed
snapshot with SQL Server) or shortening your transactions rather than removing them.

Ensure you understand the semantics of Flush(). Flushing synchronizes the persistent store with in-memory
changes but not vice-versa. Note that for all NHibernate ADO.NET connections/transactions, the transaction
isolation level for that connection applies to all operations executed by NHibernate!

The next few sections will discuss alternative approaches that utilize versioning to ensure transaction atomicity.
These are considered "advanced" approaches to be used with care.

11.2. Threads and connections

You should observe the following practices when creating NHibernate Sessions:

• Never create more than one concurrent ISession or ITransaction instance per database connection.
• Be extremely careful when creating more than one ISession per database per transaction. The ISession it-

self keeps track of updates made to loaded objects, so a different ISession might see stale data.
• The ISession is not threadsafe! Never access the same ISession in two concurrent threads. An ISession is

usually only a single unit-of-work!

Since NHibernate 5.0, the session and its queries IO bound methods have async counterparts. Each call to
an async method must be awaited before further interacting with the session or its queries.

NHibernate 5.1 107

11.3. Considering object identity

The application may concurrently access the same persistent state in two different units-of-work. However, an
instance of a persistent class is never shared between two ISession instances. Hence there are two different no-
tions of identity:

Database Identity
foo.Id.Equals(bar.Id)

CLR Identity
foo == bar

Then for objects attached to a particular Session, the two notions are equivalent. However, while the applica-
tion might concurrently access the "same" (persistent identity) business object in two different sessions, the two
instances will actually be "different" (CLR identity).

This approach leaves NHibernate and the database to worry about concurrency. The application never needs to
synchronize on any business object, as long as it sticks to a single thread per ISession or object identity (within
an ISession the application may safely use == to compare objects).

11.4. Optimistic concurrency control

Many business processes require a whole series of interactions with the user interleaved with database accesses.
In web and enterprise applications it is not acceptable for a database transaction to span a user interaction.

Maintaining isolation of business processes becomes the partial responsibility of the application tier, hence we
call this process a long running application transaction. A single application transaction usually spans several
database transactions. It will be atomic if only one of these database transactions (the last one) stores the up-
dated data, all others simply read data.

The only approach that is consistent with high concurrency and high scalability is optimistic concurrency con-
trol with versioning. NHibernate provides for three possible approaches to writing application code that uses
optimistic concurrency.

11.4.1. Long session with automatic versioning

A single ISession instance and its persistent instances are used for the whole application transaction.

The ISession uses optimistic locking with versioning to ensure that many database transactions appear to the
application as a single logical application transaction. The ISession is disconnected from any underlying
ADO.NET connection when waiting for user interaction. This approach is the most efficient in terms of data-
base access. The application need not concern itself with version checking or with reattaching detached in-
stances.

// foo is an instance loaded earlier by the Session
session.Reconnect();
using (var transaction = session.BeginTransaction())
{

foo.Property = "bar";
session.Flush();
transaction.Commit();

}
session.Disconnect();

Transactions And Concurrency

NHibernate 5.1 108

The foo object still knows which ISession it was loaded it. As soon as the ISession has an ADO.NET con-
nection, we commit the changes to the object.

This pattern is problematic if our ISession is too big to be stored during user think time, e.g. an HttpSession

should be kept as small as possible. As the ISession is also the (mandatory) first-level cache and contains all
loaded objects, we can probably use this strategy only for a few request/response cycles. This is indeed recom-
mended, as the ISession will soon also have stale data.

11.4.2. Many sessions with automatic versioning

Each interaction with the persistent store occurs in a new ISession. However, the same persistent instances are
reused for each interaction with the database. The application manipulates the state of detached instances ori-
ginally loaded in another ISession and then "re-associates" them using ISession.Update() or ISes-

sion.SaveOrUpdate().

// foo is an instance loaded by a previous Session
foo.Property = "bar";
using (var session = factory.OpenSession())
using (var transaction = session.BeginTransaction())
{

session.SaveOrUpdate(foo);
session.Flush();
transaction.Commit();

}

You may also call Lock() instead of Update() and use LockMode.Read (performing a version check, bypassing
all caches) if you are sure that the object has not been modified.

11.4.3. Customizing automatic versioning

You may disable NHibernate's automatic version increment for particular properties and collections by setting
the optimistic-lock mapping attribute to false. NHibernate will then no longer increment versions if the
property is dirty.

Legacy database schemas are often static and can't be modified. Or, other applications might also access the
same database and don't know how to handle version numbers or even timestamps. In both cases, versioning
can't rely on a particular column in a table. To force a version check without a version or timestamp property
mapping, with a comparison of the state of all fields in a row, turn on optimistic-lock="all" in the <class>

mapping. Note that this conceptually only works if NHibernate can compare the old and new state, i.e. if you
use a single long ISession and not session-per-request-with-detached-objects.

Sometimes concurrent modification can be permitted as long as the changes that have been made don't overlap.
If you set optimistic-lock="dirty" when mapping the <class>, NHibernate will only compare dirty fields
during flush.

In both cases, with dedicated version/timestamp columns or with full/dirty field comparison, NHibernate uses a
single UPDATE statement (with an appropriate WHERE clause) per entity to execute the version check and update
the information. If you use transitive persistence to cascade reattachment to associated entities, NHibernate
might execute unnecessary updates. This is usually not a problem, but on update triggers in the database might
be executed even when no changes have been made to detached instances. You can customize this behavior by
setting select-before-update="true" in the <class> mapping, forcing NHibernate to SELECT the instance to
ensure that changes did actually occur, before updating the row.

Transactions And Concurrency

NHibernate 5.1 109

11.4.4. Application version checking

Each interaction with the database occurs in a new ISession that reloads all persistent instances from the data-
base before manipulating them. This approach forces the application to carry out its own version checking to
ensure application transaction isolation. (Of course, NHibernate will still update version numbers for you.) This
approach is the least efficient in terms of database access.

// foo is an instance loaded by a previous Session
using (var session = factory.OpenSession())
using (var transaction = session.BeginTransaction())
{

int oldVersion = foo.Version;
session.Load(foo, foo.Key);
if (oldVersion != foo.Version) throw new StaleObjectStateException();
foo.Property = "bar";
session.Flush();
transaction.Commit();

}

Of course, if you are operating in a low-data-concurrency environment and don't require version checking, you
may use this approach and just skip the version check.

11.5. Session disconnection

The first approach described above is to maintain a single ISession for a whole business process that spans
user think time. (For example, a servlet might keep an ISession in the user's HttpSession.) For performance
reasons you should

1. commit the ITransaction and then
2. disconnect the ISession from the ADO.NET connection

before waiting for user activity. The method ISession.Disconnect() will disconnect the session from the
ADO.NET connection and return the connection to the pool (unless you provided the connection).

ISession.Reconnect() obtains a new connection (or you may supply one) and restarts the session. After re-
connection, to force a version check on data you aren't updating, you may call ISession.Lock() on any objects
that might have been updated by another transaction. You don't need to lock any data that you are updating.

Here is an example:

ISessionFactory sessions;
IList<Foo> fooList;
Bar bar;
....
ISession s = sessions.OpenSession();
ITransaction tx = null;

try
{

tx = s.BeginTransaction())

fooList = s
.CreateQuery(

"select foo from Eg.Foo foo where foo.Date = current date"
// uses db2 date function

).List<Foo>();

bar = new Bar();
s.Save(bar);

Transactions And Concurrency

NHibernate 5.1 110

tx.Commit();
}
catch (Exception)
{

if (tx != null) tx.Rollback();
s.Close();
throw;

}
s.Disconnect();

Later on:

s.Reconnect();

try
{

tx = s.BeginTransaction();

bar.FooTable = new HashMap();
foreach (Foo foo in fooList)
{

s.Lock(foo, LockMode.Read); //check that foo isn't stale
bar.FooTable.Put(foo.Name, foo);

}

tx.Commit();
}
catch (Exception)
{

if (tx != null) tx.Rollback();
throw;

}
finally
{

s.Close();
}

You can see from this how the relationship between ITransactions and ISessions is many-to-one, An ISes-

sion represents a conversation between the application and the database. The ITransaction breaks that con-
versation up into atomic units of work at the database level.

11.6. Pessimistic Locking

It is not intended that users spend much time worrying about locking strategies. It's usually enough to specify
an isolation level for the ADO.NET connections and then simply let the database do all the work. However, ad-
vanced users may sometimes wish to obtain exclusive pessimistic locks, or re-obtain locks at the start of a new
transaction.

NHibernate will always use the locking mechanism of the database, never lock objects in memory!

The LockMode class defines the different lock levels that may be acquired by NHibernate. A lock is obtained by
the following mechanisms:

• LockMode.Write is acquired automatically when NHibernate updates or inserts a row.
• LockMode.Upgrade may be acquired upon explicit user request using SELECT ... FOR UPDATE on databases

which support that syntax.
• LockMode.UpgradeNoWait may be acquired upon explicit user request using a SELECT ... FOR UPDATE

NOWAIT under Oracle.
• LockMode.Read is acquired automatically when NHibernate reads data under Repeatable Read or Serializ-

able isolation level. May be re-acquired by explicit user request.

Transactions And Concurrency

NHibernate 5.1 111

• LockMode.None represents the absence of a lock. All objects switch to this lock mode at the end of an
ITransaction. Objects associated with the session via a call to Update() or SaveOrUpdate() also start out
in this lock mode.

The "explicit user request" is expressed in one of the following ways:

• A call to ISession.Load(), specifying a LockMode.
• A call to ISession.Lock().
• A call to IQuery.SetLockMode().

If ISession.Load() is called with Upgrade or UpgradeNoWait, and the requested object was not yet loaded by
the session, the object is loaded using SELECT ... FOR UPDATE. If Load() is called for an object that is already
loaded with a less restrictive lock than the one requested, NHibernate calls Lock() for that object.

ISession.Lock() performs a version number check if the specified lock mode is Read, Upgrade or Up-

gradeNoWait. (In the case of Upgrade or UpgradeNoWait, SELECT ... FOR UPDATE is used.)

If the database does not support the requested lock mode, NHibernate will use an appropriate alternate mode
(instead of throwing an exception). This ensures that applications will be portable.

11.7. Connection Release Modes

The legacy (1.0.x) behavior of NHibernate in regards to ADO.NET connection management was that a ISes-

sion would obtain a connection when it was first needed and then hold unto that connection until the session
was closed. NHibernate introduced the notion of connection release modes to tell a session how to handle its
ADO.NET connections. Note that the following discussion is pertinent only to connections provided through a
configured IConnectionProvider; user-supplied connections are outside the breadth of this discussion. The
different release modes are identified by the enumerated values of NHibernate.ConnectionReleaseMode:

• OnClose - is essentially the legacy behavior described above. The NHibernate session obtains a connection
when it first needs to perform some database access and holds unto that connection until the session is
closed.

• AfterTransaction - says to release connections after a NHibernate.ITransaction has completed.

The configuration parameter connection.release_mode is used to specify which release mode to use. The pos-
sible values:

• auto (the default) - equivalent to after_transaction in the current release. It is rarely a good idea to
change this default behavior as failures due to the value of this setting tend to indicate bugs and/or invalid
assumptions in user code.

• on_close - says to use ConnectionReleaseMode.OnClose. This setting is left for backwards compatibility,
but its use is highly discouraged.

• after_transaction - says to use ConnectionReleaseMode.AfterTransaction. Note that with Connec-

tionReleaseMode.AfterTransaction, if a session is considered to be in auto-commit mode (i.e. no trans-
action was started) connections will be released after every operation.

If your application manages transactions through .NET APIs such as System.Transactions library while not
using a compatible transaction factory (see transaction.factory_class in Section 3.5, “Optional configura-
tion properties”), ConnectionReleaseMode.AfterTransaction may cause NHibernate to open and close sever-
al connections during one transaction, leading to unnecessary overhead and transaction promotion from local to
distributed. Specifying ConnectionReleaseMode.OnClose will revert to the legacy behavior and prevent this
problem from occurring.

Transactions And Concurrency

NHibernate 5.1 112

11.8. Transaction scopes (System.Transactions)

Instead of using NHibernate ITransaction, TransactionScope can be used. Please do not use both simultan-
eously. Using TransactionScope requires using a compatible transaction factory (see transac-

tion.factory_class in Section 3.5, “Optional configuration properties”). The default transaction factory sup-
ports scopes.

When using TransactionScope with NHibernate, you need to be aware of following points:

• The session will enlist with the first scope in which the session is used (or opened). As of NHibernate v5.0,
it will enlist its connection in the transaction regardless of connection string Enlist setting. Prior to v5.0, it
was relying on that setting being considered true, and on acquiring the connection within the scope.

Sub-scopes are not supported. The session will be enlisted in the first scope within which it was used, until
this scope is committed or rollback. If auto-enlistment is enabled on the connection and the session used on
others scopes than the one in which it is currently enlisted, the connection may enlist in another scope, and
the session will then fail to use it.

As of NHibernate v5.0, session auto-enlistment can be disabled from the session builder obtained with
ISessionFactory.WithOptions(), using the AutoJoinTransaction option. The connection may still enlist
itself if connection string Enlist setting is not false. A session can explicitly join the current system trans-
action by calling ISession.JoinTransaction().

• As of NHibernate v5.0, FlushMode.Commit requires the configuration setting transac-

tion.use_connection_on_system_events to be true for flushing from transaction scope commit. Other-
wise, it will be your responsibility to flush the session before completing the scope.

Using transaction.use_connection_on_system_events can cause undesired transaction promotions to
distributed: it requires using a dedicated connection for flushing, and it delays session disposal (if done in-
side the scope) to the scope disposal. If you want to avoid this, set this setting to false and manually flush
your sessions.

• As of NHibernate v5.0, ConnectionReleaseMode.AfterTransaction has no more by default an "immedi-
ate" effect with transaction scopes. Previously, it was releasing the connection from transaction completion
events. But this is not officially supported by Microsoft and this can cause issues especially with distributed
transactions.

Since v5.0, by default, the connection will be actually released after the scope disposal at the first session
usage involving a connection, or at the session closing, whichever come first. Alternatively, you may Dis-

connect() the session. (Requires Reconnect() before re-using the session.)

When using transaction.use_connection_on_system_events, if the session is disposed within the scope,
the connection releasing will still occurs from transaction completion event.

• As of NHibernate v5.0, using transaction scope and trying to use the session connection within After-

TransactionCompletion is forbidden and will raise an exception. If the setting transac-

tion.use_connection_on_system_events is false, it will forbid any connection usage from Before-

TransactionCompletion event too, when this event is triggered by a transaction scope commit or rollback.

Transactions And Concurrency

NHibernate 5.1 113

Chapter 12. Interceptors and events
It is often useful for the application to react to certain events that occur inside NHibernate. This allows imple-
mentation of certain kinds of generic functionality, and extension of NHibernate functionality.

12.1. Interceptors

The IInterceptor interface provides callbacks from the session to the application allowing the application to
inspect and/or manipulate properties of a persistent object before it is saved, updated, deleted or loaded. One
possible use for this is to track auditing information. For example, the following IInterceptor automatically
sets the createTimestamp when an IAuditable is created and updates the lastUpdateTimestamp property
when an IAuditable is updated.

You may either implement IInterceptor directly or (better) extend EmptyInterceptor.

using System;

using NHibernate;
using NHibernate.Type;

public class AuditInterceptor : EmptyInterceptor {

private int updates;
private int creates;
private int loads;

public override void OnDelete(object entity,
object id,
object[] state,
string[] propertyNames,
IType[] types)

{
// do nothing

}

public override bool OnFlushDirty(object entity,
object id,
object[] currentState,
object[] previousState,
string[] propertyNames,
IType[] types)

{
if (entity is IAuditable) {

updates++;
for (int i=0; i < propertyNames.Length; i++) {

if ("lastUpdateTimestamp".Equals(propertyNames[i])) {
currentState[i] = new DateTime();
return true;

}
}

}
return false;

}

public override bool OnLoad(object entity,
object id,
object[] state,
string[] propertyNames,
IType[] types)

{
if (entity is IAuditable) {

loads++;
}
return false;

NHibernate 5.1 114

}

public override bool OnSave(object entity,
object id,
object[] state,
string[] propertyNames,
IType[] types)

{
if (entity is IAuditable) {

creates++;
for (int i=0; i<propertyNames.Length; i++) {

if ("createTimestamp".Equals(propertyNames[i])) {
state[i] = new DateTime();
return true;

}
}

}
return false;

}

public override void AfterTransactionCompletion(ITransaction tx)
{

if (tx.WasCommitted) {
System.Console.WriteLine(

"Creations: " + creates +
", Updates: " + updates +
", Loads: " + loads);

}
updates=0;
creates=0;
loads=0;

}

}

Interceptors come in two flavors: ISession-scoped and ISessionFactory-scoped.

An ISession-scoped interceptor is specified when a session is opened using one of the overloaded ISession-
Factory.OpenSession() methods accepting an IInterceptor.

ISession session = sf.OpenSession(new AuditInterceptor());

An ISessionFactory-scoped interceptor is registered with the Configuration object prior to building the
ISessionFactory. In this case, the supplied interceptor will be applied to all sessions opened from that ISes-
sionFactory; this is true unless a session is opened explicitly specifying the interceptor to use. ISessionFact-
ory-scoped interceptors must be thread safe, taking care to not store session-specific state since multiple ses-
sions will use this interceptor (potentially) concurrently.

new Configuration().SetInterceptor(new AuditInterceptor());

12.2. Event system

If you have to react to particular events in your persistence layer, you may also use the NHibernate2 event ar-
chitecture. The event system can be used in addition or as a replacement for interceptors.

Essentially all of the methods of the ISession interface correlate to an event. You have a LoadEvent, a
FlushEvent, etc (consult the XML configuration-file XSD or the NHibernate.Event namespace for the full list
of defined event types). When a request is made of one of these methods, the ISession generates an appropri-
ate event and passes it to the configured event listeners for that type. Out-of-the-box, these listeners implement
the same processing in which those methods always resulted. However, you are free to implement a customiza-

Interceptors and events

NHibernate 5.1 115

tion of one of the listener interfaces (i.e., the LoadEvent is processed by the registered implementation of the
ILoadEventListener interface), in which case their implementation would be responsible for processing any
Load() requests made of the ISession.

The listeners should be considered effectively singletons; meaning, they are shared between requests, and thus
should not save any state as instance variables.

A custom listener should implement the appropriate interface for the event it wants to process and/or extend
one of the convenience base classes (or even the default event listeners used by NHibernate out-of-the-box as
their methods are declared virtual for this purpose). Custom listeners can either be registered programmatically
through the Configuration object, or specified in the NHibernate configuration XML. Here's an example of a
custom load event listener:

public class MyLoadListener : ILoadEventListener
{

// this is the single method defined by the LoadEventListener interface
public void OnLoad(LoadEvent theEvent, LoadType loadType)
{

if (!MySecurity.IsAuthorized(theEvent.EntityClassName, theEvent.EntityId)) {
throw new MySecurityException("Unauthorized access");

}
}

}

You also need a configuration entry telling NHibernate to use the listener in addition to the default listener:

<hibernate-configuration>
<session-factory>

...
<event type="load">

<listener class="MyLoadListener"/>
<listener class="NHibernate.Event.Default.DefaultLoadEventListener"/>

</event>
</session-factory>

</hibernate-configuration>

Instead, you may register it programmatically:

Configuration cfg = new Configuration();
ILoadEventListener[] stack =

new ILoadEventListener[] { new MyLoadListener(), new DefaultLoadEventListener() };
cfg.EventListeners.LoadEventListeners = stack;

Listeners registered declaratively cannot share instances. If the same class name is used in multiple
<listener/> elements, each reference will result in a separate instance of that class. If you need the capability
to share listener instances between listener types you must use the programmatic registration approach.

Why implement an interface and define the specific type during configuration? Well, a listener implementation
could implement multiple event listener interfaces. Having the type additionally defined during registration
makes it easier to turn custom listeners on or off during configuration.

Interceptors and events

NHibernate 5.1 116

Chapter 13. Batch processing
A naive approach to inserting 100 000 rows in the database using NHibernate might look like this:

using (ISession session = sessionFactory.OpenSession())
using (ITransaction tx = session.BeginTransaction())
{

for (int i = 0; i < 100000; i++)
{

Customer customer = new Customer(.....);
session.Save(customer);

}
tx.Commit();

}

This would fall over with an OutOfMemoryException somewhere around the 50 000th row. That's because
NHibernate caches all the newly inserted Customer instances in the session-level cache.

In this chapter we'll show you how to avoid this problem. First, however, if you are doing batch processing, it is
absolutely critical that you enable the use of ADO batching, if you intend to achieve reasonable performance.
Set the ADO batch size to a reasonable number (say, 10-50):

adonet.batch_size 20

Note that NHibernate disables insert batching at the ADO level transparently if you use an identity identifier
generator.

You also might like to do this kind of work in a process where interaction with the second-level cache is com-
pletely disabled:

cache.use_second_level_cache false

However, this is not absolutely necessary, since we can explicitly set the CacheMode to disable interaction with
the second-level cache.

13.1. Batch inserts

When making new objects persistent, you must Flush() and then Clear() the session regularly, to control the
size of the first-level cache.

using (ISession session = sessionFactory.openSession())
using (ITransaction tx = session.BeginTransaction())
{

for (int i = 0; i < 100000; i++)
{

Customer customer = new Customer(.....);
session.Save(customer);
// 20, same as the ADO batch size
if (i % 20 == 0)
{

// flush a batch of inserts and release memory:
session.Flush();
session.Clear();

}
}

tx.Commit();
}

NHibernate 5.1 117

13.2. The StatelessSession interface

Alternatively, NHibernate provides a command-oriented API that may be used for streaming data to and from
the database in the form of detached objects. A IStatelessSession has no persistence context associated with
it and does not provide many of the higher-level life cycle semantics. In particular, a stateless session does not
implement a first-level cache nor interact with any second-level or query cache. It does not implement transac-
tional write-behind or automatic dirty checking. Operations performed using a stateless session do not ever cas-
cade to associated instances. Collections are ignored by a stateless session. Operations performed via a stateless
session bypass NHibernate's event model and interceptors. Stateless sessions are vulnerable to data aliasing ef-
fects, due to the lack of a first-level cache. A stateless session is a lower-level abstraction, much closer to the
underlying ADO.

using (IStatelessSession session = sessionFactory.OpenStatelessSession())
using (ITransaction tx = session.BeginTransaction())
{

var customers = session.GetNamedQuery("GetCustomers")
.Enumerable<Customer>();

while (customers.MoveNext())
{

Customer customer = customers.Current;
customer.updateStuff(...);
session.Update(customer);

}

tx.Commit();
}

Note that in this code example, the Customer instances returned by the query are immediately detached. They
are never associated with any persistence context.

The insert(), update() and delete() operations defined by the StatelessSession interface are considered
to be direct database row-level operations, which result in immediate execution of a SQL INSERT, UPDATE or
DELETE respectively. Thus, they have very different semantics to the Save(), SaveOrUpdate() and Delete()

operations defined by the ISession interface.

13.3. DML-style operations

As already discussed, automatic and transparent object/relational mapping is concerned with the management
of object state. This implies that the object state is available in memory, hence manipulating (using the SQL
Data Manipulation Language (DML) statements: INSERT, UPDATE, DELETE) data directly in the database will
not affect in-memory state. However, NHibernate provides methods for bulk SQL-style DML statement execu-
tion which are performed through the Hibernate Query Language (HQL). A Linq implementation is available
too.

The pseudo-syntax for UPDATE and DELETE statements is: (UPDATE | DELETE) FROM? EntityName (WHERE

where_conditions)?. Some points to note:

• In the from-clause, the FROM keyword is optional
• There can only be a single entity named in the from-clause; it can optionally be aliased. If the entity name is

aliased, then any property references must be qualified using that alias; if the entity name is not aliased,
then it is illegal for any property references to be qualified.

• No joins (either implicit or explicit) can be specified in a bulk HQL query. Sub-queries may be used in the
where-clause; the sub-queries, themselves, may contain joins.

• The where-clause is also optional.

Batch processing

NHibernate 5.1 118

As an example, to execute an HQL UPDATE, use the IQuery.ExecuteUpdate() method:

using (ISession session = sessionFactory.OpenSession())
using (ITransaction tx = session.BeginTransaction())
{

string hqlUpdate = "update Customer c set c.name = :newName where c.name = :oldName";
// or string hqlUpdate = "update Customer set name = :newName where name = :oldName";
int updatedEntities = s.CreateQuery(hqlUpdate)

.SetString("newName", newName)

.SetString("oldName", oldName)

.ExecuteUpdate();
tx.Commit();

}

HQL UPDATE statements, by default do not effect the version or the timestamp property values for the affected
entities. However, you can force NHibernate to properly reset the version or timestamp property values
through the use of a versioned update. This is achieved by adding the VERSIONED keyword after the UPDATE

keyword.

using (ISession session = sessionFactory.OpenSession())
using (ITransaction tx = session.BeginTransaction())
{

string hqlVersionedUpdate =
"update versioned Customer set name = :newName where name = :oldName";

int updatedEntities = s.CreateQuery(hqlUpdate)
.SetString("newName", newName)
.SetString("oldName", oldName)
.ExecuteUpdate();

tx.Commit();
}

Note that custom version types (NHibernate.Usertype.IUserVersionType) are not allowed in conjunction
with a update versioned statement.

To execute an HQL DELETE, use the same IQuery.ExecuteUpdate() method:

using (ISession session = sessionFactory.OpenSession())
using (ITransaction tx = session.BeginTransaction())
{

string hqlDelete = "delete Customer c where c.name = :oldName";
// or String hqlDelete = "delete Customer where name = :oldName";
int deletedEntities = s.CreateQuery(hqlDelete)

.SetString("oldName", oldName)

.ExecuteUpdate();
tx.Commit();

}

The int value returned by the IQuery.ExecuteUpdate() method indicate the number of entities effected by the
operation. Consider this may or may not correlate to the number of rows effected in the database. An HQL bulk
operation might result in multiple actual SQL statements being executed, for joined-subclass, for example. The
returned number indicates the number of actual entities affected by the statement. Going back to the example of
joined-subclass, a delete against one of the subclasses may actually result in deletes against not just the table to
which that subclass is mapped, but also the "root" table and potentially joined-subclass tables further down the
inheritance hierarchy.

The pseudo-syntax for INSERT statements is: INSERT INTO EntityName properties_list select_statement.
Some points to note:

• Only the INSERT INTO ... SELECT ... form is supported; not the INSERT INTO ... VALUES ... form.

The properties_list is analogous to the column specification in the SQL INSERT statement. For entities

Batch processing

NHibernate 5.1 119

involved in mapped inheritance, only properties directly defined on that given class-level can be used in the
properties_list. Superclass properties are not allowed; and subclass properties do not make sense. In other
words, INSERT statements are inherently non-polymorphic.

• select_statement can be any valid HQL select query, with the caveat that the return types must match the
types expected by the insert. Currently, this is checked during query compilation rather than allowing the
check to relegate to the database. Note however that this might cause problems between NHibernate Types
which are equivalent as opposed to equal. This might cause issues with mismatches between a property
defined as a NHibernate.Type.DateType and a property defined as a NHibernate.Type.TimestampType,
even though the database might not make a distinction or might be able to handle the conversion.

• For the id property, the insert statement gives you two options. You can either explicitly specify the id prop-
erty in the properties_list (in which case its value is taken from the corresponding select expression) or omit
it from the properties_list (in which case a generated value is used). This later option is only available when
using id generators that operate in the database; attempting to use this option with any "in memory" type
generators will cause an exception during parsing. Note that for the purposes of this discussion, in-database
generators are considered to be NHibernate.Id.SequenceGenerator (and its subclasses) and any imple-
mentors of NHibernate.Id.IPostInsertIdentifierGenerator. The most notable exception here is
NHibernate.Id.TableHiLoGenerator, which cannot be used because it does not expose a selectable way to
get its values.

• For properties mapped as either version or timestamp, the insert statement gives you two options. You can
either specify the property in the properties_list (in which case its value is taken from the corresponding se-
lect expressions) or omit it from the properties_list (in which case the seed value defined by the NHibern-

ate.Type.IVersionType is used).

An example HQL INSERT statement execution:

using (ISession session = sessionFactory.OpenSession())
using (ITransaction tx = session.BeginTransaction())
{

var hqlInsert =
"insert into DelinquentAccount (id, name) " +
"select c.id, c.name from Customer c where ...";

int createdEntities = s.CreateQuery(hqlInsert)
.ExecuteUpdate();

tx.Commit();
}

Batch processing

NHibernate 5.1 120

Chapter 14. HQL: The Hibernate Query Language
NHibernate is equipped with an extremely powerful query language that (quite intentionally) looks very much
like SQL. But don't be fooled by the syntax; HQL is fully object-oriented, understanding notions like inherit-
ance, polymorphism and association.

14.1. Case Sensitivity

Queries are case-insensitive, except for names of .NET classes and properties. So SeLeCT is the same as sELEct
is the same as SELECT but Eg.FOO is not Eg.Foo and foo.barSet is not foo.BARSET.

This manual uses lowercase HQL keywords. Some users find queries with uppercase keywords more readable,
but we find this convention ugly when embedded in C# code.

14.2. The from clause

The simplest possible NHibernate query is of the form:

from Eg.Cat

which simply returns all instances of the class Eg.Cat.

Most of the time, you will need to assign an alias, since you will want to refer to the Cat in other parts of the
query.

from Eg.Cat as cat

This query assigns the alias cat to Cat instances, so we could use that alias later in the query. The as keyword
is optional; we could also write:

from Eg.Cat cat

Multiple classes may appear, resulting in a cartesian product or "cross" join.

from Formula, Parameter

from Formula as form, Parameter as param

It is considered good practice to name query aliases using an initial lowercase, consistent with naming stand-
ards for local variables (eg. domesticCat).

14.3. Associations and joins

We may also assign aliases to associated entities, or even to elements of a collection of values, using a join.

from Eg.Cat as cat
inner join cat.Mate as mate
left outer join cat.Kittens as kitten

from Eg.Cat as cat left join cat.Mate.Kittens as kittens

NHibernate 5.1 121

from Formula form full join form.Parameter param

The supported join types are borrowed from ANSI SQL

• inner join

• left outer join

• right outer join

• full join (not usually useful)

The inner join, left outer join and right outer join constructs may be abbreviated.

from Eg.Cat as cat
join cat.Mate as mate
left join cat.Kittens as kitten

In addition, a "fetch" join allows associations or collections of values to be initialized along with their parent
objects, using a single select. This is particularly useful in the case of a collection. It effectively overrides the
outer join and lazy declarations of the mapping file for associations and collections. See Section 20.1,
“Fetching strategies” for more information.

from Eg.Cat as cat
inner join fetch cat.Mate
left join fetch cat.Kittens

The associated objects are not returned directly in the query results. Instead, they may be accessed via the par-
ent object.

It is possible to create a cartesian product by join fetching more than one collection in a query, so take care in
this case. Join fetching multiple collection roles is also disabled for bag mappings. Note also that the fetch

construct may not be used in queries called using Enumerable(). Finally, note that full join fetch and right

join fetch are not meaningful.

14.4. The select clause

The select clause picks which objects and properties to return in the query result set. Consider:

select mate
from Eg.Cat as cat

inner join cat.Mate as mate

The query will select Mates of other Cats. Actually, you may express this query more compactly as:

select cat.Mate from Eg.Cat cat

You may even select collection elements, using the special elements function. The following query returns all
kittens of any cat.

select elements(cat.Kittens) from Eg.Cat cat

Queries may return properties of any value type including properties of component type:

select cat.Name from Eg.DomesticCat cat
where cat.Name like 'fri%'

select cust.Name.FirstName from Customer as cust

HQL: The Hibernate Query Language

NHibernate 5.1 122

Queries may return multiple objects and/or properties as an array of type object[]

select mother, offspr, mate.Name
from Eg.DomesticCat as mother

inner join mother.Mate as mate
left outer join mother.Kittens as offspr

or as an actual type-safe object

select new Family(mother, mate, offspr)
from Eg.DomesticCat as mother

join mother.Mate as mate
left join mother.Kittens as offspr

assuming that the class Family has an appropriate constructor.

14.5. Aggregate functions

HQL queries may even return the results of aggregate functions on properties:

select avg(cat.Weight), sum(cat.Weight), max(cat.Weight), count(cat)
from Eg.Cat cat

Collections may also appear inside aggregate functions in the select clause.

select cat, count(elements(cat.Kittens))
from Eg.Cat cat group by cat.Id, cat.Weight, ...

The supported aggregate functions are

• avg(...), sum(...), min(...), max(...)

• count(*)

• count(...), count(distinct ...), count(all...)

The distinct and all keywords may be used and have the same semantics as in SQL.

select distinct cat.Name from Eg.Cat cat

select count(distinct cat.Name), count(cat) from Eg.Cat cat

14.6. Polymorphic queries

A query like:

from Eg.Cat as cat

returns instances not only of Cat, but also of subclasses like DomesticCat. NHibernate queries may name any
.NET class or interface in the from clause. The query will return instances of all persistent classes that extend
that class or implement the interface. The following query would return all persistent objects:

from System.Object o

The interface INamed might be implemented by various persistent classes:

HQL: The Hibernate Query Language

NHibernate 5.1 123

from Eg.Named n, Eg.Named m where n.Name = m.Name

Note that these last two queries will require more than one SQL SELECT. This means that the order by clause
does not correctly order the whole result set.

In order to use non-mapped base classes or interfaces in HQL queries, they have to be imported. See Sec-
tion 5.1.21, “import” for more information.

14.7. The where clause

The where clause allows you to narrow the list of instances returned.

from Eg.Cat as cat where cat.Name='Fritz'

returns instances of Cat named 'Fritz'.

select foo
from Eg.Foo foo, Eg.Bar bar
where foo.StartDate = bar.Date

will return all instances of Foo for which there exists an instance of Bar with a Date property equal to the
StartDate property of the Foo. Compound path expressions make the where clause extremely powerful. Con-
sider:

from Eg.Cat cat where cat.Mate.Name is not null

This query translates to an SQL query with a table (inner) join. If you were to write something like

from Eg.Foo foo
where foo.Bar.Baz.Customer.Address.City is not null

you would end up with a query that would require four table joins in SQL.

The = operator may be used to compare not only properties, but also instances:

from Eg.Cat cat, Eg.Cat rival where cat.Mate = rival.Mate

select cat, mate
from Eg.Cat cat, Eg.Cat mate
where cat.Mate = mate

The special property (lowercase) id may be used to reference the unique identifier of an object. (You may also
use its property name.)

from Eg.Cat as cat where cat.id = 123

from Eg.Cat as cat where cat.Mate.id = 69

The second query is efficient. No table join is required!

Properties of composite identifiers may also be used. Suppose Person has a composite identifier consisting of
Country and MedicareNumber.

from Bank.Person person
where person.id.Country = 'AU'

and person.id.MedicareNumber = 123456

HQL: The Hibernate Query Language

NHibernate 5.1 124

from Bank.Account account
where account.Owner.id.Country = 'AU'

and account.Owner.id.MedicareNumber = 123456

Once again, the second query requires no table join.

Likewise, the special property class accesses the discriminator value of an instance in the case of polymorphic
persistence. A .Net class name embedded in the where clause will be translated to its discriminator value.

from Eg.Cat cat where cat.class = Eg.DomesticCat

You may also specify properties of components or composite user types (and of components of components,
etc). Never try to use a path-expression that ends in a property of component type (as opposed to a property of a
component). For example, if store.Owner is an entity with a component Address

store.Owner.Address.City // okay
store.Owner.Address // error!

An "any" type has the special properties id and class, allowing us to express a join in the following way
(where AuditLog.Item is a property mapped with <any>).

from Eg.AuditLog log, Eg.Payment payment
where log.Item.class = 'Eg.Payment, Eg, Version=...' and log.Item.id = payment.id

Notice that log.Item.class and payment.class would refer to the values of completely different database
columns in the above query.

14.8. Expressions

Expressions allowed in the where clause include most of the kind of things you could write in SQL:

• mathematical operators +, -, *, /

• binary comparison operators =, >=, <=, <>, !=, like

• logical operations and, or, not

• string concatenation ||
• SQL scalar functions like upper() and lower()

• Parentheses () indicate grouping
• in, between, is null

• positional parameters ?
• named parameters :name, :start_date, :x1
• SQL literals 'foo', 69, '1970-01-01 10:00:01.0'

• Enumeration values and constants Eg.Color.Tabby

in and between may be used as follows:

from Eg.DomesticCat cat where cat.Name between 'A' and 'B'

from Eg.DomesticCat cat where cat.Name in ('Foo', 'Bar', 'Baz')

and the negated forms may be written

from Eg.DomesticCat cat where cat.Name not between 'A' and 'B'

from Eg.DomesticCat cat where cat.Name not in ('Foo', 'Bar', 'Baz')

HQL: The Hibernate Query Language

NHibernate 5.1 125

Likewise, is null and is not null may be used to test for null values.

Booleans may be easily used in expressions by declaring HQL query substitutions in NHibernate configuration:

<property name="query.substitutions">true 1, false 0</property>

This will replace the keywords true and false with the literals 1 and 0 in the translated SQL from this HQL:

from Eg.Cat cat where cat.Alive = true

You may test the size of a collection with the special property size, or the special size() function.

from Eg.Cat cat where cat.Kittens.size > 0

from Eg.Cat cat where size(cat.Kittens) > 0

For indexed collections, you may refer to the minimum and maximum indices using minIndex and maxIndex.
Similarly, you may refer to the minimum and maximum elements of a collection of basic type using minEle-

ment and maxElement.

from Calendar cal where cal.Holidays.maxElement > current date

There are also functional forms (which, unlike the constructs above, are not case sensitive):

from Order order where maxindex(order.Items) > 100

from Order order where minelement(order.Items) > 10000

The SQL functions any, some, all, exists, in are supported when passed the element or index set of a col-
lection (elements and indices functions) or the result of a sub-query (see below).

select mother from Eg.Cat as mother, Eg.Cat as kit
where kit in elements(mother.Kittens)

select p from Eg.NameList list, Eg.Person p
where p.Name = some elements(list.Names)

from Eg.Cat cat where exists elements(cat.Kittens)

from Eg.Player p where 3 > all elements(p.Scores)

from Eg.Show show where 'fizard' in indices(show.Acts)

Note that these constructs - size, elements, indices, minIndex, maxIndex, minElement, maxElement - have
certain usage restrictions:

• in a where clause: only for databases with sub-selects
• in a select clause: only elements and indices make sense

Elements of indexed collections (arrays, lists, maps) may be referred to by index (in a where clause only):

from Order order where order.Items[0].id = 1234

select person from Person person, Calendar calendar
where calendar.Holidays['national day'] = person.BirthDay

and person.Nationality.Calendar = calendar

select item from Item item, Order order
where order.Items[order.DeliveredItemIndices[0]] = item and order.id = 11

HQL: The Hibernate Query Language

NHibernate 5.1 126

select item from Item item, Order order
where order.Items[maxindex(order.items)] = item and order.id = 11

The expression inside [] may even be an arithmetic expression.

select item from Item item, Order order
where order.Items[size(order.Items) - 1] = item

HQL also provides the built-in index() function, for elements of a one-to-many association or collection of
values.

select item, index(item) from Order order
join order.Items item

where index(item) < 5

Scalar SQL functions supported by the underlying database may be used

from Eg.DomesticCat cat where upper(cat.Name) like 'FRI%'

If you are not yet convinced by all this, think how much longer and less readable the following query would be
in SQL:

select cust
from Product prod,

Store store
inner join store.Customers cust

where prod.Name = 'widget'
and store.Location.Name in ('Melbourne', 'Sydney')
and prod = all elements(cust.CurrentOrder.LineItems)

Hint: something like

SELECT cust.name, cust.address, cust.phone, cust.id, cust.current_order
FROM customers cust,

stores store,
locations loc,
store_customers sc,
product prod

WHERE prod.name = 'widget'
AND store.loc_id = loc.id
AND loc.name IN ('Melbourne', 'Sydney')
AND sc.store_id = store.id
AND sc.cust_id = cust.id
AND prod.id = ALL(

SELECT item.prod_id
FROM line_items item, orders o
WHERE item.order_id = o.id

AND cust.current_order = o.id
)

14.9. The order by clause

The list returned by a query may be ordered by any property of a returned class or components:

from Eg.DomesticCat cat
order by cat.Name asc, cat.Weight desc, cat.Birthdate

The optional asc or desc indicate ascending or descending order respectively.

HQL: The Hibernate Query Language

NHibernate 5.1 127

14.10. The group by clause

A query that returns aggregate values may be grouped by any property of a returned class or components:

select cat.Color, sum(cat.Weight), count(cat)
from Eg.Cat cat
group by cat.Color

select foo.id, avg(elements(foo.Names)), max(indices(foo.Names))
from Eg.Foo foo
group by foo.id

Note: You may use the elements and indices constructs inside a select clause, even on databases with no sub-
selects.

A having clause is also allowed.

select cat.color, sum(cat.Weight), count(cat)
from Eg.Cat cat
group by cat.Color
having cat.Color in (Eg.Color.Tabby, Eg.Color.Black)

SQL functions and aggregate functions are allowed in the having and order by clauses, if supported by the un-
derlying database (ie. not in MySQL).

select cat
from Eg.Cat cat

join cat.Kittens kitten
group by cat.Id, cat.Name, cat.Other, cat.Properties
having avg(kitten.Weight) > 100
order by count(kitten) asc, sum(kitten.Weight) desc

Note that neither the group by clause nor the order by clause may contain arithmetic expressions. Also note
that NHibernate currently does not expand a grouped entity, so you can't write group by cat if all properties of
cat are non-aggregated. You have to list all non-aggregated properties explicitly.

14.11. Sub-queries

For databases that support sub-selects, NHibernate supports sub-queries within queries. A sub-query must be
surrounded by parentheses (often by an SQL aggregate function call). Even correlated sub-queries (sub-queries
that refer to an alias in the outer query) are allowed.

from Eg.Cat as fatcat
where fatcat.Weight > (

select avg(cat.Weight) from Eg.DomesticCat cat
)

from Eg.DomesticCat as cat
where cat.Name = some (

select name.NickName from Eg.Name as name
)

from Eg.Cat as cat
where not exists (

from eg.Cat as mate where mate.Mate = cat
)

from Eg.DomesticCat as cat
where cat.Name not in (

select name.NickName from Eg.Name as name

HQL: The Hibernate Query Language

NHibernate 5.1 128

)

14.12. HQL examples

NHibernate queries can be quite powerful and complex. In fact, the power of the query language is one of
NHibernate's main selling points. Here are some example queries very similar to queries that I used on a recent
project. Note that most queries you will write are much simpler than these!

The following query returns the order id, number of items and total value of the order for all unpaid orders for a
particular customer and given minimum total value, ordering the results by total value. In determining the
prices, it uses the current catalog. The resulting SQL query, against the ORDER, ORDER_LINE, PRODUCT, CATALOG
and PRICE tables has four inner joins and an (uncorrelated) subselect.

select order.id, sum(price.Amount), count(item)
from Order as order

join order.LineItems as item
join item.Product as product,
Catalog as catalog
join catalog.Prices as price

where order.Paid = false
and order.Customer = :customer
and price.Product = product
and catalog.EffectiveDate < sysdate
and catalog.EffectiveDate >= all (

select cat.EffectiveDate
from Catalog as cat
where cat.EffectiveDate < sysdate

)
group by order
having sum(price.Amount) > :minAmount
order by sum(price.Amount) desc

What a monster! Actually, in real life, I'm not very keen on sub-queries, so my query was really more like this:

select order.id, sum(price.amount), count(item)
from Order as order

join order.LineItems as item
join item.Product as product,
Catalog as catalog
join catalog.Prices as price

where order.Paid = false
and order.Customer = :customer
and price.Product = product
and catalog = :currentCatalog

group by order
having sum(price.Amount) > :minAmount
order by sum(price.Amount) desc

The next query counts the number of payments in each status, excluding all payments in the AwaitingApproval

status where the most recent status change was made by the current user. It translates to an SQL query with two
inner joins and a correlated subselect against the PAYMENT, PAYMENT_STATUS and PAYMENT_STATUS_CHANGE

tables.

select count(payment), status.Name
from Payment as payment

join payment.CurrentStatus as status
join payment.StatusChanges as statusChange

where payment.Status.Name <> PaymentStatus.AwaitingApproval
or (

statusChange.TimeStamp = (
select max(change.TimeStamp)

HQL: The Hibernate Query Language

NHibernate 5.1 129

from PaymentStatusChange change
where change.Payment = payment

)
and statusChange.User <> :currentUser

)
group by status.Name, status.SortOrder
order by status.SortOrder

If I would have mapped the StatusChanges collection as a list, instead of a set, the query would have been
much simpler to write.

select count(payment), status.Name
from Payment as payment

join payment.CurrentStatus as status
where payment.Status.Name <> PaymentStatus.AwaitingApproval

or payment.StatusChanges[maxIndex(payment.StatusChanges)].User <> :currentUser
group by status.Name, status.SortOrder
order by status.SortOrder

The next query uses the MS SQL Server isNull() function to return all the accounts and unpaid payments for
the organization to which the current user belongs. It translates to an SQL query with three inner joins, an outer
join and a subselect against the ACCOUNT, PAYMENT, PAYMENT_STATUS, ACCOUNT_TYPE, ORGANIZATION and
ORG_USER tables.

select account, payment
from Account as account

left outer join account.Payments as payment
where :currentUser in elements(account.Holder.Users)

and PaymentStatus.Unpaid = isNull(payment.CurrentStatus.Name, PaymentStatus.Unpaid)
order by account.Type.SortOrder, account.AccountNumber, payment.DueDate

For some databases, we would need to do away with the (correlated) subselect.

select account, payment
from Account as account

join account.Holder.Users as user
left outer join account.Payments as payment

where :currentUser = user
and PaymentStatus.Unpaid = isNull(payment.CurrentStatus.Name, PaymentStatus.Unpaid)

order by account.Type.SortOrder, account.AccountNumber, payment.DueDate

14.13. Tips & Tricks

You can count the number of query results without actually returning them:

var count = session.CreateQuery("select count(*) from").UniqueResult<long>();

To order a result by the size of a collection, use the following query:

select usr.id, usr.Name
from User as usr

left join usr.Messages as msg
group by usr.id, usr.Name
order by count(msg)

If your database supports sub-selects, you can place a condition upon selection size in the where clause of your
query:

from User usr where size(usr.Messages) >= 1

HQL: The Hibernate Query Language

NHibernate 5.1 130

If your database doesn't support sub-selects, use the following query:

select usr.id, usr.Name
from User usr

join usr.Messages msg
group by usr.id, usr.Name
having count(msg) >= 1

As this solution can't return a User with zero messages because of the inner join, the following form is also use-
ful:

select usr.id, usr.Name
from User as usr

left join usr.Messages as msg
group by usr.id, usr.Name
having count(msg) = 0

Properties of an object can be bound to named query parameters:

IQuery q =
s.CreateQuery("from foo in class Foo where foo.Name=:Name and foo.Size=:Size");

q.SetProperties(fooBean); // fooBean has properties Name and Size
var foos = q.List<Foo>();

Collections are pageable by using the IQuery interface with a filter:

IQuery q = s.CreateFilter(collection, ""); // the trivial filter
q.setMaxResults(PageSize);
q.setFirstResult(PageSize * pageNumber);
var page = q.List<Cat>();

Collection elements may be ordered or grouped using a query filter:

var orderedCollection = s
.CreateFilter(collection, "order by this.Amount")
.List<Cat>();

var counts = s
.CreateFilter(collection,

"select this.Type, count(this) group by this.Type")
.List<object[]>();

HQL: The Hibernate Query Language

NHibernate 5.1 131

Chapter 15. Criteria Queries
NHibernate features an intuitive, extensible criteria query API.

15.1. Creating an ICriteria instance

The interface NHibernate.ICriteria represents a query against a particular persistent class. The ISession is a
factory for ICriteria instances.

ICriteria crit = sess.CreateCriteria<Cat>();
crit.SetMaxResults(50);
var cats = crit.List<Cat>();

15.2. Narrowing the result set

An individual query criterion is an instance of the interface NHibernate.Expression.ICriterion. The class
NHibernate.Expression.Expression defines factory methods for obtaining certain built-in ICriterion types.

var cats = sess.CreateCriteria<Cat>()
.Add(Expression.Like("Name", "Fritz%"))
.Add(Expression.Between("Weight", minWeight, maxWeight))
.List<Cat>();

Expressions may be grouped logically.

var cats = sess.CreateCriteria<Cat>()
.Add(Expression.Like("Name", "Fritz%"))
.Add(Expression.Or(

Expression.Eq("Age", 0),
Expression.IsNull("Age")

))
.List<Cat>();

var cats = sess.CreateCriteria<Cat>()
.Add(Expression.In("Name", new String[] { "Fritz", "Izi", "Pk" }))
.Add(Expression.Disjunction()

.Add(Expression.IsNull("Age"))
.Add(Expression.Eq("Age", 0))
.Add(Expression.Eq("Age", 1))
.Add(Expression.Eq("Age", 2))

))
.List<Cat>();

There are quite a range of built-in criterion types (Expression subclasses), but one that is especially useful lets
you specify SQL directly.

// Create a string parameter for the SqlString below
var cats = sess.CreateCriteria<Cat>()

.Add(Expression.Sql("lower({alias}.Name) like lower(?)",
"Fritz%", NHibernateUtil.String))

.List<Cat>();

The {alias} placeholder with be replaced by the row alias of the queried entity.

NHibernate 5.1 132

15.3. Ordering the results

You may order the results using NHibernate.Expression.Order.

var cats = sess.CreateCriteria<Cat>()
.Add(Expression.Like("Name", "F%")
.AddOrder(Order.Asc("Name"))
.AddOrder(Order.Desc("Age"))
.SetMaxResults(50)
.List<Cat>();

15.4. Associations

You may easily specify constraints upon related entities by navigating associations using CreateCriteria().

var cats = sess.CreateCriteria<Cat>()
.Add(Expression.Like("Name", "F%")
.CreateCriteria("Kittens")

.Add(Expression.Like("Name", "F%"))
.List<Cat>();

Note that the second CreateCriteria() returns a new instance of ICriteria, which refers to the elements of
the Kittens collection.

The following, alternate form is useful in certain circumstances.

var cats = sess.CreateCriteria<Cat>()
.CreateAlias("Kittens", "kt")
.CreateAlias("Mate", "mt")
.Add(Expression.EqProperty("kt.Name", "mt.Name"))
.List<Cat>();

(CreateAlias() does not create a new instance of ICriteria.)

Note that the kittens collections held by the Cat instances returned by the previous two queries are not pre-
filtered by the criteria! If you wish to retrieve just the kittens that match the criteria, you must use SetResult-

Transformer(Transformers.AliasToEntityMap).

var cats = sess.CreateCriteria<Cat>()
.CreateCriteria("Kittens", "kt")

.Add(Expression.Eq("Name", "F%"))
.SetResultTransformer(Transformers.AliasToEntityMap)
.List<IDictionary>();

foreach (IDictionary map in cats)
{

Cat cat = (Cat) map[CriteriaSpecification.RootAlias];
Cat kitten = (Cat) map["kt"];

}

Note that for retrieving just kittens you can also use an entity projection. See Section 15.8, “Projections, ag-
gregation and grouping” for more information.

15.5. Join entities without association (Entity joins or ad hoc
joins)

Criteria Queries

NHibernate 5.1 133

In criteria you have the ability to define a join to any entity, not just through a mapped association. To achieve
it, use CreateEntityAlias and CreateEntityCriteria. By example:

IList<Cat> uniquelyNamedCats = sess.CreateCriteria<Cat>("c")
.CreateEntityAlias(

"joinedCat",
Restrictions.And(

Restrictions.EqProperty("c.Name", "joinedCat.Name"),
Restrictions.NotEqProperty("c.Id", "joinedCat.Id")),

JoinType.LeftOuterJoin,
typeof(Cat).FullName)

.Add(Restrictions.IsNull("joinedCat.Id"))

.List();

15.6. Dynamic association fetching

You may specify association fetching semantics at runtime using SetFetchMode().

var cats = sess.CreateCriteria<Cat>()
.Add(Expression.Like("Name", "Fritz%"))
.SetFetchMode("Mate", FetchMode.Eager)
.SetFetchMode("Kittens", FetchMode.Eager)
.List<Cat>();

This query will fetch both Mate and Kittens by outer join. See Section 20.1, “Fetching strategies” for more in-
formation.

15.7. Example queries

The class NHibernate.Expression.Example allows you to construct a query criterion from a given instance.

Cat cat = new Cat();
cat.Sex = 'F';
cat.Color = Color.Black;
var results = session.CreateCriteria<Cat>()

.Add(Example.Create(cat))

.List<Cat>();

Version properties, identifiers and associations are ignored. By default, null-valued properties and properties
which return an empty string from the call to ToString() are excluded.

You can adjust how the Example is applied.

Example example = Example.Create(cat)
.ExcludeZeroes() //exclude null- or zero-valued properties
.ExcludeProperty("Color") //exclude the property named "color"
.IgnoreCase() //perform case insensitive string comparisons
.EnableLike(); //use like for string comparisons

var results = session.CreateCriteria<Cat>()
.Add(example)
.List<Cat>();

You can even use examples to place criteria upon associated objects.

var results = session.CreateCriteria<Cat>()
.Add(Example.Create(cat))
.CreateCriteria("Mate")

.Add(Example.Create(cat.Mate))
.List<Cat>();

Criteria Queries

NHibernate 5.1 134

15.8. Projections, aggregation and grouping

The class NHibernate.Expression.Projections is a factory for IProjection instances. We apply a projection
to a query by calling SetProjection().

var results = session.CreateCriteria<Cat>()
.SetProjection(Projections.RowCount())
.Add(Expression.Eq("Color", Color.BLACK))
.List<int>();

var results = session.CreateCriteria<Cat>()
.SetProjection(Projections.ProjectionList()

.Add(Projections.RowCount())

.Add(Projections.Avg("Weight"))

.Add(Projections.Max("Weight"))

.Add(Projections.GroupProperty("Color"))
)
.List<object[]>();

There is no explicit "group by" necessary in a criteria query. Certain projection types are defined to be grouping
projections, which also appear in the SQL group by clause.

An alias may optionally be assigned to a projection, so that the projected value may be referred to in restrictions
or orderings. Here are two different ways to do this:

var results = session.CreateCriteria<Cat>()
.SetProjection(Projections.Alias(Projections.GroupProperty("Color"), "colr"))
.AddOrder(Order.Asc("colr"))
.List<string>();

var results = session.CreateCriteria<Cat>()
.SetProjection(Projections.GroupProperty("Color").As("colr"))
.AddOrder(Order.Asc("colr"))
.List<string>();

The Alias() and As() methods simply wrap a projection instance in another, aliased, instance of IProjection.
As a shortcut, you can assign an alias when you add the projection to a projection list:

var results = session.CreateCriteria<Cat>()
.SetProjection(Projections.ProjectionList()

.Add(Projections.RowCount(), "catCountByColor")

.Add(Projections.Avg("Weight"), "avgWeight")

.Add(Projections.Max("Weight"), "maxWeight")

.Add(Projections.GroupProperty("Color"), "color")
)
.AddOrder(Order.Desc("catCountByColor"))
.AddOrder(Order.Desc("avgWeight"))
.List<object[]>();

var results = session.CreateCriteria(typeof(DomesticCat), "cat")
.CreateAlias("kittens", "kit")
.SetProjection(Projections.ProjectionList()

.Add(Projections.Property("cat.Name"), "catName")

.Add(Projections.Property("kit.Name"), "kitName")
)
.AddOrder(Order.Asc("catName"))
.AddOrder(Order.Asc("kitName"))
.List<object[]>();

You can also add an entity projection to a criteria query:

Criteria Queries

NHibernate 5.1 135

var kittens = sess.CreateCriteria<Cat>()
.CreateCriteria("Kittens", "kt")
.Add(Expression.Eq("Name", "F%"))
.SetProjection(Projections.Entity(typeof(Cat), "kt"))
.List();

var cats = sess.CreateCriteria<Cat>()
.CreateCriteria("Kittens", "kt")
.Add(Expression.Eq("Name", "F%"))
.SetProjection(

Projections.RootEntity(),
Projections.Entity(typeof(Cat), "kt"))

.List<object[]>();

foreach (var objs in cats)
{

Cat cat = (Cat) objs[0];
Cat kitten = (Cat) objs[1];

}

See Section 16.9, “Entities Projection” for more information.

15.9. Detached queries and sub-queries

The DetachedCriteria class lets you create a query outside the scope of a session, and then later execute it us-
ing some arbitrary ISession.

DetachedCriteria query = DetachedCriteria.For<Cat>()
.Add(Expression.Eq("sex", 'F'));

using (ISession session =)
using (ITransaction txn = session.BeginTransaction())
{

var results = query.GetExecutableCriteria(session).SetMaxResults(100).List<Cat>();
txn.Commit();

}

A DetachedCriteria may also be used to express a sub-query. ICriterion instances involving sub-queries may
be obtained via Subqueries.

DetachedCriteria avgWeight = DetachedCriteria.For<Cat>()
.SetProjection(Projections.Avg("Weight"));

session.CreateCriteria<Cat>()
.Add(Subqueries.Gt("Weight", avgWeight))
.List<Cat>();

DetachedCriteria weights = DetachedCriteria.For<Cat>()
.SetProjection(Projections.Property("Weight"));

session.CreateCriteria<Cat>()
.Add(Subqueries.GeAll("Weight", weights))
.List<Cat>();

Even correlated sub-queries are possible:

DetachedCriteria avgWeightForSex = DetachedCriteria.For<Cat>("cat2")
.SetProjection(Projections.Avg("Weight"))
.Add(Expression.EqProperty("cat2.Sex", "cat.Sex"));

session.CreateCriteria(typeof(Cat), "cat")
.Add(Subqueries.Gt("weight", avgWeightForSex))
.List<Cat>();

Criteria Queries

NHibernate 5.1 136

Chapter 16. QueryOver Queries
The ICriteria API is NHibernate's implementation of Query Object. NHibernate 3.0 introduces the QueryOver
API, which combines the use of Extension Methods and Lambda Expressions (both new in .Net 3.5) to provide
a statically type-safe wrapper round the ICriteria API.

QueryOver uses Lambda Expressions to provide some extra syntax to remove the 'magic strings' from your
ICriteria queries.

So, for example:

.Add(Expression.Eq("Name", "Smith"))

becomes:

.Where<Person>(p => p.Name == "Smith")

With this kind of syntax there are no 'magic strings', and refactoring tools like 'Find All References', and 'Re-
factor->Rename' work perfectly.

Note: QueryOver is intended to remove the references to 'magic strings' from the ICriteria API while maintain-
ing it's opaqueness. It is not a LINQ provider; NHibernate has a built-in Linq provider for this.

16.1. Structure of a Query

Queries are created from an ISession using the syntax:

IList<Cat> cats =
session.QueryOver<Cat>()

.Where(c => c.Name == "Max")

.List();

Detached QueryOver (analogous to DetachedCriteria) can be created, and then used with an ISession using:

QueryOver<Cat> query =
QueryOver.Of<Cat>()

.Where(c => c.Name == "Paddy");

IList<Cat> cats =
query.GetExecutableQueryOver(session)

.List();

Queries can be built up to use restrictions, projections, and ordering using a fluent inline syntax:

var catNames =
session.QueryOver<Cat>()

.WhereRestrictionOn(c => c.Age).IsBetween(2).And(8)

.Select(c => c.Name)

.OrderBy(c => c.Name).Asc

.List<string>();

16.2. Simple Expressions

NHibernate 5.1 137

The Restrictions class (used by ICriteria) has been extended to include overloads that allow Lambda Expression
syntax. The Where() method works for simple expressions (<, <=, ==, !=, >, >=) so instead of:

ICriterion equalCriterion = Restrictions.Eq("Name", "Max")

You can write:

ICriterion equalCriterion = Restrictions.Where<Cat>(c => c.Name == "Max")

Since the QueryOver class (and IQueryOver interface) is generic and knows the type of the query, there is an
inline syntax for restrictions that does not require the additional qualification of class name. So you can also
write:

var cats =
session.QueryOver<Cat>()

.Where(c => c.Name == "Max")

.And(c => c.Age > 4)

.List();

Note, the methods Where() and And() are semantically identical; the And() method is purely to allow Query-
Over to look similar to HQL/SQL.

Boolean comparisons can be made directly instead of comparing to true/false:

.Where(p => p.IsParent)

.And(p => !p.IsRetired)

Simple expressions can also be combined using the || and && operators. So ICriteria like:

.Add(Restrictions.And(
Restrictions.Eq("Name", "test name"),
Restrictions.Or(

Restrictions.Gt("Age", 21),
Restrictions.Eq("HasCar", true))))

Can be written in QueryOver as:

.Where(p => p.Name == "test name" && (p.Age > 21 || p.HasCar))

Each of the corresponding overloads in the QueryOver API allows the use of regular ICriterion to allow access
to private properties.

.Where(Restrictions.Eq("Name", "Max"))

It is worth noting that the QueryOver API is built on top of the ICriteria API. Internally the structures are the
same, so at runtime the statement below, and the statement above, are stored as exactly the same ICriterion. The
actual Lambda Expression is not stored in the query.

QueryOver Queries

NHibernate 5.1 138

.Where(c => c.Name == "Max")

16.3. Additional Restrictions

Some SQL operators/functions do not have a direct equivalent in C#. (e.g., the SQL where name like

'%anna%'). These operators have overloads for QueryOver in the Restrictions class, so you can write:

.Where(Restrictions.On<Cat>(c => c.Name).IsLike("%anna%"))

There is also an inline syntax to avoid the qualification of the type:

.WhereRestrictionOn(c => c.Name).IsLike("%anna%")

While simple expressions (see above) can be combined using the || and && operators, this is not possible with
the other restrictions. So this ICriteria:

.Add(Restrictions.Or(
Restrictions.Gt("Age", 5)
Restrictions.In("Name", new string[] { "Max", "Paddy" })))

Would have to be written as:

.Add(Restrictions.Or(
Restrictions.Where<Cat>(c => c.Age > 5)
Restrictions.On<Cat>(c => c.Name).IsIn(new string[] { "Max", "Paddy" })))

However, in addition to the additional restrictions factory methods, there are extension methods to allow a more
concise inline syntax for some of the operators. So this:

.WhereRestrictionOn(c => c.Name).IsLike("%anna%")

May also be written as:

.Where(c => c..Name.IsLike("%anna%"))

16.4. Associations

QueryOver can navigate association paths using JoinQueryOver() (analogous to ICriteria.CreateCriteria() to
create sub-criteria).

The factory method QuerOver<T>() on ISession returns an IQueryOver<T>. More accurately, it returns an
IQueryOver<T,T> (which inherits from IQueryOver<T>).

An IQueryOver has two types of interest; the root type (the type of entity that the query returns), and the type of
the 'current' entity being queried. For example, the following query uses a join to create a sub-QueryOver
(analogous to creating sub-criteria in the ICriteria API):

IQueryOver<Cat,Kitten> catQuery =
session.QueryOver<Cat>()

.JoinQueryOver(c => c.Kittens)
.Where(k => k.Name == "Tiddles");

QueryOver Queries

NHibernate 5.1 139

The JoinQueryOver returns a new instance of the IQueryOver than has its root at the Kittens collection. The de-
fault type for restrictions is now Kitten (restricting on the name 'Tiddles' in the above example), while calling
.List() will return an IList<Cat>. The type IQueryOver<Cat,Kitten> inherits from IQueryOver<Cat>.

Note, the overload for JoinQueryOver takes an IEnumerable<T>, and the C# compiler infers the type from that.
If your collection type is not IEnumerable<T>, then you need to qualify the type of the sub-criteria:

IQueryOver<Cat,Kitten> catQuery =
session.QueryOver<Cat>()

.JoinQueryOver<Kitten>(c => c.Kittens)
.Where(k => k.Name == "Tiddles");

The default join is an inner-join. Each of the additional join types can be specified using the methods .Inner,

.Left, .Right, or .Full. For example, to left outer-join on Kittens use:

IQueryOver<Cat,Kitten> catQuery =
session.QueryOver<Cat>()

.Left.JoinQueryOver(c => c.Kittens)
.Where(k => k.Name == "Tiddles");

16.5. Join entities without association (Entity joins or ad hoc
joins)

In QueryOver you have the ability to define a join to any entity, not just through a mapped association. To
achieve it, use JoinEntityAlias and JoinEntityQueryOver. By example:

Cat cat = null;
Cat joinedCat = null;

var uniquelyNamedCats = sess.QueryOver<Cat>(() => cat)
.JoinEntityAlias(

() => joinedCat,
() => cat.Name == joinedCat.Name && cat.Id != joinedCat.Id,
JoinType.LeftOuterJoin)

.Where(() => joinedCat.Id == null)

.List();

16.6. Aliases

In the traditional ICriteria interface aliases are assigned using 'magic strings', however their value does not cor-
respond to a name in the object domain. For example, when an alias is assigned using
.CreateAlias("Kitten", "kittenAlias"), the string "kittenAlias" does not correspond to a property or class
in the domain.

In QueryOver, aliases are assigned using an empty variable. The variable can be declared anywhere (but should
be null at runtime). The compiler can then check the syntax against the variable is used correctly, but at
runtime the variable is not evaluated (it's just used as a placeholder for the alias).

Each Lambda Expression function in QueryOver has a corresponding overload to allow use of aliases, and a
.JoinAlias function to traverse associations using aliases without creating a sub-QueryOver.

Cat catAlias = null;
Kitten kittenAlias = null;

QueryOver Queries

NHibernate 5.1 140

IQueryOver<Cat,Cat> catQuery =
session.QueryOver<Cat>(() => catAlias)

.JoinAlias(() => catAlias.Kittens, () => kittenAlias)

.Where(() => catAlias.Age > 5)

.And(() => kittenAlias.Name == "Tiddles");

16.7. Projections

Simple projections of the properties of the root type can be added using the .Select method which can take
multiple Lambda Expression arguments:

var selection =
session.QueryOver<Cat>()

.Select(
c => c.Name,
c => c.Age)

.List<object[]>();

Because this query no longer returns a Cat, the return type must be explicitly specified. If a single property is
projected, the return type can be specified using:

IList<int> ages =
session.QueryOver<Cat>()

.Select(c => c.Age)

.List<int>();

However, if multiple properties are projected, then the returned list will contain object arrays, as per a projec-
tion in ICriteria. This could be fed into an anonymous type using:

var catDetails =
session.QueryOver<Cat>()

.Select(
c => c.Name,
c => c.Age)

.List<object[]>()

.Select(properties => new {
CatName = (string)properties[0],
CatAge = (int)properties[1],
});

Console.WriteLine(catDetails[0].CatName);
Console.WriteLine(catDetails[0].CatAge);

Note that the second .Select call in this example is an extension method on IEnumerable<T> supplied in Sys-
tem.Linq; it is not part of NHibernate.

QueryOver allows arbitrary IProjection to be added (allowing private properties to be projected). The Projec-
tions factory class also has overloads to allow Lambda Expressions to be used:

var selection =
session.QueryOver<Cat>()

.Select(Projections.ProjectionList()
.Add(Projections.Property<Cat>(c => c.Name))
.Add(Projections.Avg<Cat>(c => c.Age)))

.List<object[]>();

QueryOver Queries

NHibernate 5.1 141

In addition there is an inline syntax for creating projection lists that does not require the explicit class qualifica-
tion:

var selection =
session.QueryOver<Cat>()

.SelectList(list => list
.Select(c => c.Name)
.SelectAvg(c => c.Age))

.List<object[]>();

Projections can also have arbitrary aliases assigned to them to allow result transformation. If there is a CatSum-
mary DTO class defined as:

public class CatSummary
{

public string Name { get; set; }
public int AverageAge { get; set; }

}

... then aliased projections can be used with the AliasToBean<T> transformer:

CatSummary summaryDto = null;
IList<CatSummary> catReport =

session.QueryOver<Cat>()
.SelectList(list => list

.SelectGroup(c => c.Name).WithAlias(() => summaryDto.Name)

.SelectAvg(c => c.Age).WithAlias(() => summaryDto.AverageAge))
.TransformUsing(Transformers.AliasToBean<CatSummary>())
.List<CatSummary>();

16.8. Projection Functions

In addition to projecting properties, there are extension methods to allow certain common dialect-registered
functions to be applied. For example you can write the following to get 3 letters named people.

.Where(p => p.FirstName.StrLength() == 3)

The functions can also be used inside projections:

.Select(
p => Projections.Concat(p.LastName, ", ", p.FirstName),
p => p.Height.Abs())

16.9. Entities Projection

You can add entity projections via the AsEntity() extension.

Cat mate = null;

var catAndMateNameList = sess.QueryOver<Cat>()
.JoinAlias(c => c.Mate, () => mate)
.Select(c => c.AsEntity(), c => mate.Name)
.List<object[]>();

Or it can be done via the Projections.RootEntity and Projections.Entity methods if more control over

QueryOver Queries

NHibernate 5.1 142

loaded entities is required. For instance, entity projections can be lazy loaded or fetched with lazy properties:

.Select(
Projections.Entity(() => alias1).SetLazy(true),
Projections.Entity(() => alias2).SetFetchLazyProperties(true),
Projections.RootEntity()

)

16.10. Sub-queries

The Sub-queries factory class has overloads to allow Lambda Expressions to express sub-query restrictions. For
example:

QueryOver<Cat> maximumAge =
QueryOver.Of<Cat>()

.SelectList(p => p.SelectMax(c => c.Age));

IList<Cat> oldestCats =
session.QueryOver<Cat>()

.Where(Subqueries.WhereProperty<Cat>(c => c.Age).Eq(maximumAge))

.List();

The inline syntax allows you to use sub-queries without re-qualifying the type:

IList<Cat> oldestCats =
session.QueryOver<Cat>()

.WithSubquery.WhereProperty(c => c.Age).Eq(maximumAge)

.List();

There is an extension method As() on (a detached) QueryOver that allows you to cast it to any type. This is
used in conjunction with the overloads Where(), WhereAll(), and WhereSome() to allow use of the built-in C#
operators for comparison, so the above query can be written as:

IList<Cat> oldestCats =
session.QueryOver<Cat>()

.WithSubquery.Where(c => c.Age == maximumAge.As<int>())

.List();

QueryOver Queries

NHibernate 5.1 143

Chapter 17. Linq Queries
NHibernate 3.0 introduces the Linq to NHibernate provider, which allows the use of the Linq API for querying
with NHibernate.

IQueryable queries are obtained with the Query methods used on the ISession or IStatelessSession. (Prior
to NHibernate 5.0, these methods were extensions defined in the NHibernate.Linq namespace.) A number of
NHibernate Linq extensions giving access to NHibernate specific features are defined in the NHibernate.Linq

namespace. Of course, the Linq namespace is still needed too.

using System.Linq;
using NHibernate.Linq;

Note: NHibernate has another querying API which uses lambda, QueryOver. It should not be confused with a
Linq provider.

17.1. Structure of a Query

Queries are created from an ISession using the syntax:

IList<Cat> cats =
session.Query<Cat>()

.Where(c => c.Color == "white")

.ToList();

The Query<TEntity> function yields an IQueryable<TEntity>, with which Linq extension methods or Linq
syntax can be used. When executed, the IQueryable<TEntity> will be translated to a SQL query on the data-
base.

It is possible to query a specific sub-class while still using a queryable of the base class.

IList<Cat> cats =
session.Query<Cat>("Eg.DomesticCat, Eg")

.Where(c => c.Name == "Max")

.ToList();

Starting with NHibernate 5.0, queries can also be created from an entity collection, with the standard Linq ex-
tension AsQueryable available from System.Linq namespace.

IList<Cat> whiteKittens =
cat.Kittens.AsQueryable()

.Where(k => k.Color == "white")

.ToList();

This will be executed as a query on that cat's kittens without loading the entire collection.

If the collection is a map, call AsQueryable on its Values property.

IList<Cat> whiteKittens =
cat.Kittens.Values.AsQueryable()

.Where(k => k.Color == "white")

.ToList();

NHibernate 5.1 144

A client timeout for the query can be defined. As most others NHibernate specific features for Linq, this is
available through an extension defined in NHibernate.Linq namespace.

IList<Cat> cats =
session.Query<Cat>()

.Where(c => c.Color == "black")
// Allows 10 seconds only.
.SetOptions(o => o.SetTimeout(10))
.ToList();

17.2. Parameter types

Query parameters get extracted from the Linq expression. Their types are selected according to NHibernate
types default for .Net types.

The MappedAs extension method allows to override the default type.

IList<Cat> cats =
session.Query<Cat>()

.Where(c => c.BirthDate == DateTime.Today.MappedAs(NHibernateUtil.Date))

.ToList();

IList<Cat> cats =
session.Query<Cat>()

.Where(c => c.Name == "Max".MappedAs(TypeFactory.Basic("AnsiString(200)")))

.ToList();

17.3. Supported methods and members

Many methods and members of common .Net types are supported by the Linq to NHibernate provider. They
will be translated to the appropriate SQL, provided they are called on an entity property (or expression deriving
from) or at least one of their arguments references an entity property. (Otherwise, their return values will be
evaluated with .Net runtime before query execution.)

17.3.1. Common methods

The .Net 4 CompareTo method of strings and numerical types is translated to a case statement yielding -1|0|1

according to the result of the comparison.

Many type conversions are available. For all of them, .Net overloads with more than one argument are not sup-
ported.

Numerical types can be converted to other numerical types or parsed from strings, using following methods:

• Convert.ToDecimal

• Convert.ToDouble

• Convert.ToInt32

Linq Queries

NHibernate 5.1 145

• Decimal.Parse

• Double.Parse

• Int32.Parse

Strings can be converted to Boolean and DateTime with Convert.ToBoolean or Boolean.Parse and Con-

vert.ToDateTime or DateTime.Parse respectively.

On all types supporting string conversion, ToString method can be called.

IList<string> catBirthDates =
session.Query<Cat>()

.Select(c => c.BirthDate.ToString())

.ToList();

Equals methods taking a single argument with the same type can be used. Of course, == is supported too.

17.3.2. DateTime and DateTimeOffset

Date and time parts properties can be called on DateTime and DateTimeOffset. Those properties are:

• Date

• Day

• Hour

• Minute

• Month

• Second

• Year

17.3.3. ICollection, non generic and generic

Collections Contains methods are supported.

IList<Cat> catsWithWrongKitten =
session.Query<Cat>()

.Where(c => c.Kittens.Contains(c))

.ToList();

17.3.4. IDictionary, non generic and generic

Dictionaries Item getter are supported. This enables referencing a dictionary item value in a where condition, as
it can be done with HQL expressions.

Non generic dictionary method Contains and generic dictionary method ContainsKey are translated to corres-
ponding indices HQL expressions. Supposing Acts in following HQL example is generic,

Linq Queries

NHibernate 5.1 146

from Eg.Show show where 'fizard' in indices(show.Acts)

it could be written with Linq:

IList<Show> shows =
session.Query<Show>()

.Where(s => s.Acts.ContainsKey("fizard"))

.ToList();

17.3.5. Mathematical functions

The following list of mathematical functions from System.Math is handled:

• Trigonometric functions: Acos, Asin, Atan, Atan2, Cos, Cosh, Sin, Sinh, Tan, Tanh

• Abs (all overloads)

• Ceiling (both overloads)

• Floor (both overloads)

• Pow

• Round (only overloads without a mode argument)

• Sign (all overloads)

• Sqrt

• Truncate (both overloads)

17.3.6. Nullables

On Nullable<> types, GetValueOrDefault methods, with or without a provided default value, are supported.

17.3.7. Strings

The following properties and methods are supported on strings:

• Contains

• EndsWith (without additional parameters)

• IndexOf (only overloads taking a character or a string, and optionally a start index)

• Length

• Replace (both overloads)

• StartsWith (without additional parameters)

• Substring (both overloads)

Linq Queries

NHibernate 5.1 147

• ToLower (without additional parameters) and ToLowerInvariant, both translated to the same database lower
function.

• ToUpper (without additional parameters) and ToUpperInvariant, both translated to the same database upper
function.

• Trim (both overloads)

• TrimEnd

• TrimStart

Furthermore, a string Like extension methods allows expressing SQL like conditions.

IList<DomesticCat> cats =
session.Query<DomesticCat>()

.Where(c => c.Name.Like("L%l%l"))

.ToList();

This Like extension method is a Linq to NHibernate method only. Trying to call it in another context is not
supported.

If you want to avoid depending on the NHibernate.Linq namespace, you can define your own replica of the
Like methods. Any 2 or 3 arguments method named Like in a class named SqlMethods will be translated.

17.4. Future results

Future results are supported by the Linq provider. They are not evaluated till one gets executed. At that point,
all defined future results are evaluated in one single round-trip to database.

// Define queries
IFutureEnumerable<Cat> cats =

session.Query<Cat>()
.Where(c => c.Color == "black")
.ToFuture();

IFutureValue<int> catCount =
session.Query<Cat>()

.ToFutureValue(q => q.Count());
// Execute them
foreach(Cat cat in cats.GetEnumerable())
{

// Do something
}
if (catCount.Value > 10)
{

// Do something
}

In above example, accessing catCount.Value does not trigger a round-trip to database: it has been evaluated
with cats.GetEnumerable() call. If instead catCount.Value was accessed first, it would have executed both
future and cats.GetEnumerable() would have not trigger a round-trip to database.

17.5. Fetching associations

Linq Queries

NHibernate 5.1 148

A Linq query may load associated entities or collection of entities. Once the query is defined, using Fetch al-
lows fetching a related entity, and FetchMany allows fetching a collection. These methods are defined as exten-
sions in NHibernate.Linq namespace.

IList<Cat> oldCats =
session.Query<Cat>()

.Where(c => c.BirthDate.Year < 2010)

.Fetch(c => c.Mate)

.FetchMany(c => c.Kittens)

.ToList();

Issuing many FetchMany on the same query may cause a cartesian product over the fetched collections. This
can be avoided by splitting the fetches among future queries.

IQueryable<Cat> oldCatsQuery =
session.Query<Cat>()

.Where(c => c.BirthDate.Year < 2010);
oldCatsQuery

.Fetch(c => c.Mate)

.FetchMany(c => c.Kittens)

.ToFuture();
IList<Cat> oldCats =

oldCatsQuery
.FetchMany(c => c.AnotherCollection)
.ToFuture()
.GetEnumerable()
.ToList();

Use ThenFetch and ThenFetchMany for fetching associations of the previously fetched association.

IList<Cat> oldCats =
session.Query<Cat>()

.Where(c => c.BirthDate.Year < 2010)

.Fetch(c => c.Mate)

.FetchMany(c => c.Kittens)

.ThenFetch(k => k.Mate)

.ToList();

17.6. Modifying entities inside the database

Beginning with NHibernate 5.0, Linq queries can be used for inserting, updating or deleting entities. The query
defines the data to delete, update or insert, and then Delete, Update, UpdateBuilder, InsertInto and Insert-

Builder queryable extension methods allow to delete it, or instruct in which way it should be updated or inser-
ted. Those queries happen entirely inside the database, without extracting corresponding entities out of the data-
base.

These operations are a Linq implementation of Section 13.3, “DML-style operations”, with the same abilities
and limitations.

17.6.1. Inserting new entities

InsertInto and InsertBuilder method extensions expect a NHibernate queryable defining the data source of
the insert. This data can be entities or a projection. Then they allow specifying the target entity type to insert,
and how to convert source data to those target entities. Three forms of target specification exist.

Linq Queries

NHibernate 5.1 149

Using projection to target entity:

session.Query<Cat>()
.Where(c => c.BodyWeight > 20)
.InsertInto(c => new Dog { Name = c.Name + "dog", BodyWeight = c.BodyWeight });

Projections can be done with an anonymous object too, but it requires supplying explicitly the target type,
which in turn requires re-specifying the source type:

session.Query<Cat>()
.Where(c => c.BodyWeight > 20)
.InsertInto<Cat, Dog>(c => new { Name = c.Name + "dog", BodyWeight = c.BodyWeight });

Or using assignments:

session.Query<Cat>()
.Where(c => c.BodyWeight > 20)
.InsertBuilder()
.Into<Dog>()
.Value(d => d.Name, c => c.Name + "dog")
.Value(d => d.BodyWeight, c => c.BodyWeight)
.Insert();

In all cases, unspecified properties are not included in the resulting SQL insert. version and timestamp proper-
ties are exceptions. If not specified, they are inserted with their seed value.

For more information on Insert limitations, please refer to Section 13.3, “DML-style operations”.

17.6.2. Updating entities

Update and UpdateBuilder method extensions expect a NHibernate queryable defining the entities to update.
Then they allow specifying which properties should be updated with which values. As for insertion, three forms
of target specification exist.

Using projection to updated entity:

session.Query<Cat>()
.Where(c => c.BodyWeight > 20)
.Update(c => new Cat { BodyWeight = c.BodyWeight / 2 });

Projections can be done with an anonymous object too:

session.Query<Cat>()
.Where(c => c.BodyWeight > 20)
.Update(c => new { BodyWeight = c.BodyWeight / 2 });

Or using assignments:

session.Query<Cat>()
.Where(c => c.BodyWeight > 20)
.UpdateBuilder()
.Set(c => c.BodyWeight, c => c.BodyWeight / 2)
.Update();

In all cases, unspecified properties are not included in the resulting SQL update. This could be changed for
version and timestamp properties: using UpdateVersioned instead of Update allows incrementing the version.
Custom version types (NHibernate.Usertype.IUserVersionType) are not supported.

Linq Queries

NHibernate 5.1 150

When using projection to updated entity, please note that the constructed entity must have the exact same type
than the underlying queryable source type. Attempting to project to any other class (anonymous projections ex-
cepted) will fail.

17.6.3. Deleting entities

Delete method extension expects a queryable defining the entities to delete. It immediately deletes them.

session.Query<Cat>()
.Where(c => c.BodyWeight > 20)
.Delete();

17.7. Query cache

The Linq provider can use the query cache if it is setup. Refer to Section 20.4, “The Query Cache” for more de-
tails on how to set it up.

SetOptions extension method allows to enable the cache for the query.

IList<Cat> oldCats =
session.Query<Cat>()

.Where(c => c.BirthDate.Year < 2010)

.SetOptions(o => o.SetCacheable(true))

.ToList();

The cache mode and cache region can be specified too.

IList<Cat> cats =
session.Query<Cat>()

.Where(c => c.Name == "Max")

.SetOptions(o => o
.SetCacheable(true)
.SetCacheRegion("catNames")
.SetCacheMode(CacheMode.Put))

.ToList();

17.8. Extending the Linq to NHibernate provider

The Linq to NHibernate provider can be extended for supporting additional SQL functions or translating addi-
tional methods or properties to a SQL query.

17.8.1. Adding SQL functions

NHibernate Linq provider feature a LinqExtensionMethod attribute. It allows using an arbitrary, built-in or user
defined, SQL function. It should be applied on a method having the same arguments than the SQL function.

public static class CustomLinqExtensions
{

[LinqExtensionMethod()]
public static string Checksum(this double input)

Linq Queries

NHibernate 5.1 151

{
// No need to implement it in .Net, unless you wish to call it
// outside IQueryable context too.
throw new NotImplementedException("This call should be translated " +

"to SQL and run db side, but it has been run with .Net runtime");
}

}

Then it can be used in a Linq to NHibernate query.

var rnd = (new Random()).NextDouble();
IList<Cat> cats =

session.Query<Cat>()
// Pseudo random order
.OrderBy(c => (c.Id * rnd).Checksum())
.ToList();

The function name is inferred from the method name. If needed, another name can be provided.

public static class CustomLinqExtensions
{

[LinqExtensionMethod("dbo.aCustomFunction")]
public static string ACustomFunction(this string input, string otherInput)
{

throw new NotImplementedException();
}

}

Since NHibernate v5.0, the Linq provider will no more evaluate in-memory the method call even when it does
not depend on the queried data. If you wish to have the method call evaluated before querying whenever pos-
sible, and then replaced in the query by its resulting value, specify LinqExtensionPreEvalu-

ation.AllowPreEvaluation on the attribute.

public static class CustomLinqExtensions
{

[LinqExtensionMethod("dbo.aCustomFunction",
LinqExtensionPreEvaluation.AllowPreEvaluation)]

public static string ACustomFunction(this string input, string otherInput)
{

// In-memory evaluation implementation.
return input.Replace(otherInput, "blah");

}
}

17.8.2. Adding a custom generator

Generators are responsible for translating .Net method calls found in lambdas to the proper HQL constructs.
Adding support for a new method call can be achieved by registering an additional generator in the Linq to
NHibernate provider.

If the purpose of the added method is to simply call some SQL function, using Section 17.8.1, “Adding SQL
functions” will be easier.

As an example, here is how to add support for an AsNullable method which would allow to call aggregates
which may yield null without to explicitly cast to the nullable type of the aggregate.

public static class NullableExtensions
{

public static T? AsNullable<T>(this T value) where T : struct

Linq Queries

NHibernate 5.1 152

{
// Allow runtime use.
// Not useful for linq-to-nhibernate, could be:
// throw NotSupportedException();
return value;

}
}

Adding support in Linq to NHibernate for a custom method requires a generator. For this AsNullable method,
we need a method generator, declaring statically its supported method.

public class AsNullableGenerator : BaseHqlGeneratorForMethod
{

public AsNullableGenerator()
{

SupportedMethods = new[]
{

ReflectHelper.GetMethodDefinition(() => NullableExtensions.AsNullable(0))
};

}

public override HqlTreeNode BuildHql(MethodInfo method,
Expression targetObject,
ReadOnlyCollection<Expression> arguments,
HqlTreeBuilder treeBuilder,
IHqlExpressionVisitor visitor)

{
// This has just to transmit the argument "as is", HQL does not need
// a specific call for null conversion.
return visitor.Visit(arguments[0]).AsExpression();

}
}

There are property generators too, and the supported methods or properties can be dynamically declared. Check
NHibernate NHibernate.Linq.Functions namespace classes's sources for more examples. CompareGenerator
and DateTimePropertiesHqlGenerator are examples of those other cases.

For adding AsNullableGenerator in Linq to NHibernate provider, a new generators registry should be used.
Derive from the default one and merge it. (Here we have a static declaration of method support case.)

public class ExtendedLinqToHqlGeneratorsRegistry :
DefaultLinqToHqlGeneratorsRegistry
{

public ExtendedLinqToHqlGeneratorsRegistry()
: base()

{
this.Merge(new AsNullableGenerator());

}
}

In the case of dynamic declaration of method support, another call is required instead of the merge: Re-

gisterGenerator. CompareGenerator illustrates this.

The last step is to instruct NHibernate to use this extended registry. It can be achieved through xml configura-
tion under session-factory node, or by code before building the session factory. Use one of them.

<property name="linqtohql.generatorsregistry">
YourNameSpace.ExtendedLinqToHqlGeneratorsRegistry, YourAssemblyName

</property>

using NHibernate.Cfg;
// ...

Linq Queries

NHibernate 5.1 153

var cfg = new Configuration();
cfg.LinqToHqlGeneratorsRegistry<ExtendedLinqToHqlGeneratorsRegistry>();
// And build the session factory with this configuration.

Now the following query could be executed, without failing if no Max cat exists.

var oldestMaxBirthDate =
session.Query<Cat>()

.Where(c => c.Name == "Max")

.Select(c => c.BirthDate.AsNullable())

.Min();

(Of course, the same result could be obtained with (DateTime?)(c.BirthDate).)

By default, the Linq provider will try to evaluate the method call with .Net runtime whenever possible, instead
of translating it to SQL. It will not do it if at least one of the parameters of the method call has its value origin-
ating from an entity, or if the method is marked with the NoPreEvaluation attribute (available since NHibern-
ate 5.0).

Linq Queries

NHibernate 5.1 154

Chapter 18. Native SQL
You may also express queries in the native SQL dialect of your database. This is useful if you want to utilize
database specific features such as query hints or the CONNECT keyword in Oracle. It also provides a clean migra-
tion path from a direct SQL/ADO.NET based application to NHibernate.

NHibernate allows you to specify handwritten SQL (including stored procedures) for all create, update, delete,
and load operations.

18.1. Using an ISQLQuery

Execution of native SQL queries is controlled via the ISQLQuery interface, which is obtained by calling ISes-

sion.CreateSQLQuery(). The following describes how to use this API for querying.

18.1.1. Scalar queries

The most basic SQL query is to get a list of scalars (values).

sess.CreateSQLQuery("SELECT * FROM CATS")
.AddScalar("ID", NHibernateUtil.Int64)
.AddScalar("NAME", NHibernateUtil.String)
.AddScalar("BIRTHDATE", NHibernateUtil.Date)

This query specified:

• the SQL query string

• the columns and types to return

This will return an IList of Object arrays (object[]) with scalar values for each column in the CATS table.
Only these three columns will be returned, even though the query is using * and could return more than the
three listed columns.

18.1.2. Entity queries

The above query was about returning scalar values, basically returning the "raw" values from the result set. The
following shows how to get entity objects from a native SQL query via AddEntity().

sess.CreateSQLQuery("SELECT * FROM CATS").AddEntity(typeof(Cat));
sess.CreateSQLQuery("SELECT ID, NAME, BIRTHDATE FROM CATS").AddEntity(typeof(Cat));

This query specified:

• the SQL query string

• the entity returned by the query

Assuming that Cat is mapped as a class with the columns ID, NAME and BIRTHDATE the above queries will
both return an IList where each element is a Cat entity.

If the entity is mapped with a many-to-one to another entity it is required to also return its identifier when per-

NHibernate 5.1 155

forming the native query, otherwise a database specific "column not found" error will occur. The additional
columns will automatically be returned when using the * notation, but we prefer to be explicit as in the follow-
ing example for a many-to-one to a Dog:

sess.CreateSQLQuery("SELECT ID, NAME, BIRTHDATE, DOG_ID FROM CATS")
.AddEntity(typeof(Cat));

This will allow cat.Dog property access to function properly.

18.1.3. Handling associations and collections

It is possible to eagerly join in the Dog to avoid the possible extra round-trip for initializing the proxy. This is
done via the AddJoin() method, which allows you to join in an association or collection.

sess
.CreateSQLQuery(

"SELECT cat.ID, NAME, BIRTHDATE, DOG_ID, D_ID, D_NAME " +
"FROM CATS cat, DOGS d WHERE cat.DOG_ID = d.D_ID")

.AddEntity("cat", typeof(Cat))

.AddJoin("cat.Dog");

In this example the returned Cat's will have their Dog property fully initialized without any extra round-trip to
the database. Notice that we added a alias name ("cat") to be able to specify the target property path of the join.
It is possible to do the same eager joining for collections, e.g. if the Cat had a one-to-many to Dog instead.

sess
.CreateSQLQuery(

"SELECT ID, NAME, BIRTHDATE, D_ID, D_NAME, CAT_ID " +
"FROM CATS cat, DOGS d WHERE cat.ID = d.CAT_ID")

.AddEntity("cat", typeof(Cat))

.AddJoin("cat.Dogs");

At this stage we are reaching the limits of what is possible with native queries without starting to enhance the
SQL queries to make them usable in NHibernate; the problems start to arise when returning multiple entities of
the same type or when the default alias/column names are not enough.

18.1.4. Returning multiple entities

Until now the result set column names are assumed to be the same as the column names specified in the map-
ping document. This can be problematic for SQL queries which join multiple tables, since the same column
names may appear in more than one table.

Column alias injection is needed in the following query (which most likely will fail):

sess
.CreateSQLQuery(

"SELECT cat.*, mother.* " +
"FROM CATS cat, CATS mother WHERE cat.MOTHER_ID = mother.ID")

.AddEntity("cat", typeof(Cat))

.AddEntity("mother", typeof(Cat))

The intention for this query is to return two Cat instances per row, a cat and its mother. This will fail since there
is a conflict of names since they are mapped to the same column names and on some databases the returned
column aliases will most likely be on the form "c.ID", "c.NAME", etc. which are not equal to the columns spe-
cified in the mappings ("ID" and "NAME").

The following form is not vulnerable to column name duplication:

Native SQL

NHibernate 5.1 156

sess
.CreateSQLQuery(

"SELECT {cat.*}, {mother.*} " +
"FROM CATS cat, CATS mother WHERE cat.MOTHER_ID = mother.ID")

.AddEntity("cat", typeof(Cat))

.AddEntity("mother", typeof(Cat))

This query specified:

• the SQL query string, with placeholders for NHibernate to inject column aliases

• the entities returned by the query

The {cat.*} and {mother.*} notation used above is a shorthand for "all properties". Alternatively, you may list
the columns explicitly, but even in this case we let NHibernate inject the SQL column aliases for each property.
The placeholder for a column alias is just the property name qualified by the table alias. In the following ex-
ample, we retrieve Cats and their mothers from a different table (cat_log) to the one declared in the mapping
metadata. Notice that we may even use the property aliases in the where clause if we like.

String sql = "SELECT c.ID as {c.Id}, c.NAME as {c.Name}, " +
"c.BIRTHDATE as {c.BirthDate}, c.MOTHER_ID as {c.Mother}, {mother.*} " +
"FROM CAT_LOG c, CAT_LOG m WHERE {c.Mother} = m.ID";

var loggedCats = sess.CreateSQLQuery(sql)
.AddEntity("c", typeof(Cat))
.AddEntity("m", typeof(Cat)).List<object[]>();

18.1.4.1. Alias and property references

For most cases the above alias injection is needed, but for queries relating to more complex mappings like com-
posite properties, inheritance discriminators, collections etc. there are some specific aliases to use to allow
NHibernate to inject the proper aliases.

The following table shows the different possibilities of using the alias injection. Note: the alias names in the
result are examples, each alias will have a unique and probably different name when used.

Table 18.1. Alias injection names

Description Syntax Example

A simple property {[aliasname].[prope

rtyname]}

A_NAME as {item.Name}

A composite property {[aliasname].[compo

nent-

name].[propertyname

]}

CURRENCY as {item.Amount.Currency}, VALUE as

{item.Amount.Value}

Discriminator of an
entity

{[aliasname].class} DISC as {item.class}

All properties of an
entity

{[aliasname].*} {item.*}

A collection key {[aliasname].key} ORGID as {coll.key}

The id of an collection {[aliasname].id} EMPID as {coll.id}

Native SQL

NHibernate 5.1 157

Description Syntax Example

The element of an col-
lection

{[aliasname].elemen

t}

XID as {coll.element}

property of the ele-
ment in the collection

{[aliasname].elemen

t.[propertyname]}

NAME as {coll.element.Name}

All properties of the
element in the collec-
tion

{[aliasname].elemen

t.*}

{coll.element.*}

All properties of the
collection

{[aliasname].*} {coll.*}

18.1.5. Returning non-managed entities

It is possible to apply an IResultTransformer to native sql queries. Allowing it to e.g. return non-managed en-
tities.

sess.CreateSQLQuery("SELECT NAME, BIRTHDATE FROM CATS")
.SetResultTransformer(Transformers.AliasToBean(typeof(CatDTO)))

This query specified:

• the SQL query string

• a result transformer

The above query will return a list of CatDTO which has been instantiated and injected the values of NAME and
BIRTHNAME into its corresponding properties or fields.

IMPORTANT: The custom IResultTransformer should override Equals and GetHashCode, otherwise the
query translation won't be cached. This also will result in memory leak.

18.1.6. Handling inheritance

Native SQL queries which query for entities that are mapped as part of an inheritance hierarchy must include
all properties for the base class and all its subclasses.

18.1.7. Parameters

Native SQL queries support positional as well as named parameters:

var query = sess
.CreateSQLQuery("SELECT * FROM CATS WHERE NAME like ?")
.AddEntity(typeof(Cat));

var pusList = query.SetString(0, "Pus%").List<Cat>();

query = sess
.createSQLQuery("SELECT * FROM CATS WHERE NAME like :name")
.AddEntity(typeof(Cat));

var pusList = query.SetString("name", "Pus%").List<Cat>();

Native SQL

NHibernate 5.1 158

18.2. Named SQL queries

Named SQL queries may be defined in the mapping document and called in exactly the same way as a named
HQL query. In this case, we do not need to call AddEntity().

<sql-query name="persons">
<return alias="person" class="eg.Person"/>
SELECT person.NAME AS {person.Name},

person.AGE AS {person.Age},
person.SEX AS {person.Sex}

FROM PERSON person
WHERE person.NAME LIKE :namePattern

</sql-query>

var people = sess.GetNamedQuery("persons")
.SetString("namePattern", namePattern)
.SetMaxResults(50)
.List<Person>();

The <return-join> and <load-collection> elements are used to join associations and define queries which
initialize collections, respectively.

<sql-query name="personsWith">
<return alias="person" class="eg.Person"/>
<return-join alias="address" property="person.MailingAddress"/>
SELECT person.NAME AS {person.Name},

person.AGE AS {person.Age},
person.SEX AS {person.Sex},
adddress.STREET AS {address.Street},
adddress.CITY AS {address.City},
adddress.STATE AS {address.State},
adddress.ZIP AS {address.Zip}

FROM PERSON person
JOIN ADDRESS adddress

ON person.ID = address.PERSON_ID AND address.TYPE='MAILING'
WHERE person.NAME LIKE :namePattern

</sql-query>

A named SQL query may return a scalar value. You must declare the column alias and NHibernate type using
the <return-scalar> element:

<sql-query name="mySqlQuery">
<return-scalar column="name" type="String"/>
<return-scalar column="age" type="Int64"/>
SELECT p.NAME AS name,

p.AGE AS age,
FROM PERSON p WHERE p.NAME LIKE 'Hiber%'

</sql-query>

You can externalize the resultset mapping information in a <resultset> element to either reuse them across
several named queries or through the SetResultSetMapping() API.

<resultset name="personAddress">
<return alias="person" class="eg.Person"/>
<return-join alias="address" property="person.MailingAddress"/>

</resultset>

<sql-query name="personsWith" resultset-ref="personAddress">
SELECT person.NAME AS {person.Name},

person.AGE AS {person.Age},
person.SEX AS {person.Sex},
adddress.STREET AS {address.Street},
adddress.CITY AS {address.City},

Native SQL

NHibernate 5.1 159

adddress.STATE AS {address.State},
adddress.ZIP AS {address.Zip}

FROM PERSON person
JOIN ADDRESS adddress

ON person.ID = address.PERSON_ID AND address.TYPE='MAILING'
WHERE person.NAME LIKE :namePattern

</sql-query>

You can alternatively use the resultset mapping information in your .hbm.xml files directly in code.

var cats = sess.CreateSQLQuery(
"select {cat.*}, {kitten.*} " +
"from cats cat, cats kitten " +
"where kitten.mother = cat.id")

.SetResultSetMapping("catAndKitten")

.List<Cat>();

Like HQL named queries, SQL named queries accepts a number of attributes matching settings available on the
ISQLQuery interface.

• flush-mode - override the session flush mode just for this query.
• cacheable - allow the query results to be cached by the second level cache. See Chapter 26, NHibern-

ate.Caches.
• cache-region - specify the cache region of the query.
• cache-mode - specify the cache mode of the query.
• fetch-size - set a fetch size for the underlying ADO query.
• timeout - set the query timeout in seconds.
• read-only - true switches yielded entities to read-only. See Chapter 10, Read-only entities.
• comment - add a custom comment to the SQL.

18.2.1. Using return-property to explicitly specify column/alias names

With <return-property> you can explicitly tell NHibernate what column aliases to use, instead of using the
{}-syntax to let NHibernate inject its own aliases.

<sql-query name="mySqlQuery">
<return alias="person" class="eg.Person">

<return-property name="Name" column="myName"/>
<return-property name="Age" column="myAge"/>
<return-property name="Sex" column="mySex"/>

</return>
SELECT person.NAME AS myName,

person.AGE AS myAge,
person.SEX AS mySex,

FROM PERSON person WHERE person.NAME LIKE :name
</sql-query>

<return-property> also works with multiple columns. This solves a limitation with the {}-syntax which can
not allow fine grained control of multi-column properties.

<sql-query name="organizationCurrentEmployments">
<return alias="emp" class="Employment">

<return-property name="Salary">
<return-column name="VALUE"/>
<return-column name="CURRENCY"/>

</return-property>
<return-property name="EndDate" column="myEndDate"/>

</return>
SELECT EMPLOYEE AS {emp.Employee}, EMPLOYER AS {emp.Employer},
STARTDATE AS {emp.StartDate}, ENDDATE AS {emp.EndDate},
REGIONCODE as {emp.RegionCode}, EID AS {emp.Id}, VALUE, CURRENCY

Native SQL

NHibernate 5.1 160

FROM EMPLOYMENT
WHERE EMPLOYER = :id AND ENDDATE IS NULL
ORDER BY STARTDATE ASC

</sql-query>

Notice that in this example we used <return-property> in combination with the {}-syntax for injection, allow-
ing users to choose how they want to refer column and properties.

If your mapping has a discriminator you must use <return-discriminator> to specify the discriminator
column.

18.2.2. Using stored procedures for querying

NHibernate introduces support for queries via stored procedures and functions. Most of the following docu-
mentation is equivalent for both. The stored procedure/function must return a resultset to be able to work with
NHibernate. An example of such a stored function in MS SQL Server 2000 and higher is as follows:

CREATE PROCEDURE selectAllEmployments AS
SELECT EMPLOYEE, EMPLOYER, STARTDATE, ENDDATE,
REGIONCODE, EMPID, VALUE, CURRENCY
FROM EMPLOYMENT

To use this query in NHibernate you need to map it via a named query.

<sql-query name="selectAllEmployments_SP">
<return alias="emp" class="Employment">

<return-property name="employee" column="EMPLOYEE"/>
<return-property name="employer" column="EMPLOYER"/>
<return-property name="startDate" column="STARTDATE"/>
<return-property name="endDate" column="ENDDATE"/>
<return-property name="regionCode" column="REGIONCODE"/>
<return-property name="id" column="EID"/>
<return-property name="salary">

<return-column name="VALUE"/>
<return-column name="CURRENCY"/>

</return-property>
</return>
exec selectAllEmployments

</sql-query>

Notice that stored procedures currently only return scalars and entities. <return-join> and
<load-collection> are not supported.

18.2.2.1. Rules/limitations for using stored procedures

To use stored procedures with NHibernate the procedures/functions have to follow some rules. If they do not
follow those rules they are not usable with NHibernate. If you still want to use these procedures you have to ex-
ecute them via session.Connection. The rules are different for each database, since database vendors have dif-
ferent stored procedure semantics/syntax.

Stored procedure queries can't be paged with SetFirstResult()/SetMaxResults().

Recommended call form is dependent on your database. For MS SQL Server use exec functionName

<parameters>.

For Oracle the following rules apply:

• A function must return a result set. The first parameter of a procedure must be an OUT that returns a result

Native SQL

NHibernate 5.1 161

set. This is done by using a SYS_REFCURSOR type in Oracle 9i or later. In Oracle you need to define a REF

CURSOR type, see Oracle literature.

For MS SQL server the following rules apply:

• The procedure must return a result set. NHibernate will use DbCommand.ExecuteReader() to obtain the res-
ults.

• If you can enable SET NOCOUNT ON in your procedure it will probably be more efficient, but this is not a re-
quirement.

18.3. Custom SQL for create, update and delete

NHibernate can use custom SQL statements for create, update, and delete operations. The class and collection
persisters in NHibernate already contain a set of configuration time generated strings (insertsql, deletesql, up-
datesql etc.). The mapping tags <sql-insert>, <sql-delete>, and <sql-update> override these strings:

<class name="Person">
<id name="id">

<generator class="increment"/>
</id>
<property name="name" not-null="true"/>
<sql-insert>INSERT INTO PERSON (NAME, ID) VALUES (UPPER(?), ?)</sql-insert>
<sql-update>UPDATE PERSON SET NAME=UPPER(?) WHERE ID=?</sql-update>
<sql-delete>DELETE FROM PERSON WHERE ID=?</sql-delete>

</class>

Note that the custom sql-insert will not be used if you use identity to generate identifier values for the
class.

The SQL is directly executed in your database, so you are free to use any dialect you like. This will of course
reduce the portability of your mapping if you use database specific SQL.

Stored procedures are supported if the database-native syntax is used:

<class name="Person">
<id name="id">

<generator class="increment"/>
</id>
<property name="name" not-null="true"/>
<sql-insert>exec createPerson ?, ?</sql-insert>
<sql-delete>exec deletePerson ?</sql-delete>
<sql-update>exec updatePerson ?, ?</sql-update>

</class>

The order of the positional parameters is currently vital, as they must be in the same sequence as NHibernate
expects them.

You can see the expected order by enabling debug logging for the NHibernate.Persister.Entity level. With
this level enabled NHibernate will print out the static SQL that is used to create, update, delete etc. entities. (To
see the expected sequence, remember to not include your custom SQL in the mapping files as that will override
the NHibernate generated static sql.)

The stored procedures are by default required to affect the same number of rows as NHibernate-generated SQL
would. NHibernate uses DbCommand.ExecuteNonQuery to retrieve the number of rows affected. This check can
be disabled by using check="none" attribute in sql-insert element.

Native SQL

NHibernate 5.1 162

18.4. Custom SQL for loading

You may also declare your own SQL (or HQL) queries for entity loading:

<sql-query name="person">
<return alias="pers" class="Person" lock-mode="upgrade"/>
SELECT NAME AS {pers.Name}, ID AS {pers.Id}
FROM PERSON
WHERE ID=?
FOR UPDATE

</sql-query>

This is just a named query declaration, as discussed earlier. You may reference this named query in a class
mapping:

<class name="Person">
<id name="Id">

<generator class="increment"/>
</id>
<property name="Name" not-null="true"/>
<loader query-ref="person"/>

</class>

This even works with stored procedures.

You may even define a query for collection loading:

<set name="Employments" inverse="true">
<key/>
<one-to-many class="Employment"/>
<loader query-ref="employments"/>

</set>

<sql-query name="employments">
<load-collection alias="emp" role="Person.Employments"/>
SELECT {emp.*}
FROM EMPLOYMENT emp
WHERE EMPLOYER = :id
ORDER BY STARTDATE ASC, EMPLOYEE ASC

</sql-query>

You could even define an entity loader that loads a collection by join fetching:

<sql-query name="person">
<return alias="pers" class="Person"/>
<return-join alias="emp" property="pers.Employments"/>
SELECT NAME AS {pers.*}, {emp.*}
FROM PERSON pers
LEFT OUTER JOIN EMPLOYMENT emp

ON pers.ID = emp.PERSON_ID
WHERE ID=?

</sql-query>

Native SQL

NHibernate 5.1 163

Chapter 19. Filtering data
NHibernate provides an innovative new approach to handling data with "visibility" rules. A NHibernate filter is
a global, named, parameterized filter that may be enabled or disabled for a particular NHibernate session.

19.1. NHibernate filters

NHibernate adds the ability to pre-define filter criteria and attach those filters at both a class and a collection
level. A filter criteria is the ability to define a restriction clause very similar to the existing "where" attribute
available on the class and various collection elements. Except these filter conditions can be parameterized. The
application can then make the decision at runtime whether given filters should be enabled and what their para-
meter values should be. Filters can be used like database views, but parameterized inside the application.

In order to use filters, they must first be defined and then attached to the appropriate mapping elements. To
define a filter, use the <filter-def/> element within a <hibernate-mapping/> element:

<filter-def name="myFilter">
<filter-param name="myFilterParam" type="String"/>

</filter-def>

Then, this filter can be attached to a class:

<class name="MyClass" ...>
...
<filter name="myFilter" condition=":myFilterParam = MY_FILTERED_COLUMN"/>

</class>

or, to a collection:

<set ...>
<filter name="myFilter" condition=":myFilterParam = MY_FILTERED_COLUMN"/>

</set>

or, even to both (or multiples of each) at the same time.

The methods on ISession are: EnableFilter(string filterName), GetEnabledFilter(string

filterName), and DisableFilter(string filterName). By default, filters are not enabled for a given session;
they must be explicitly enabled through use of the ISession.EnableFilter() method, which returns an in-
stance of the IFilter interface. Using the simple filter defined above, this would look like:

session.EnableFilter("myFilter").SetParameter("myFilterParam", "some-value");

Note that methods on the NHibernate.IFilter interface do allow the method-chaining common to much of
NHibernate.

A full example, using temporal data with an effective record date pattern:

<filter-def name="effectiveDate">
<filter-param name="asOfDate" type="date"/>

</filter-def>

<class name="Employee" ...>
...

<many-to-one name="Department" column="dept_id" class="Department"/>
<property name="EffectiveStartDate" type="date" column="eff_start_dt"/>
<property name="EffectiveEndDate" type="date" column="eff_end_dt"/>

NHibernate 5.1 164

...
<!--

Note that this assumes non-terminal records have an eff_end_dt set to
a max db date for simplicity-sake

-->
<filter name="effectiveDate"

condition=":asOfDate BETWEEN eff_start_dt and eff_end_dt"/>
</class>

<class name="Department" ...>
...

<set name="Employees" lazy="true">
<key column="dept_id"/>
<one-to-many class="Employee"/>
<filter name="effectiveDate"

condition=":asOfDate BETWEEN eff_start_dt and eff_end_dt"/>
</set>

</class>

Then, in order to ensure that you always get back currently effective records, simply enable the filter on the ses-
sion prior to retrieving employee data:

ISession session = ...;
session.EnableFilter("effectiveDate").SetParameter("asOfDate", DateTime.Today);
var results = session.CreateQuery("from Employee as e where e.Salary > :targetSalary")

.SetInt64("targetSalary", 1000000L)

.List<Employee>();

In the HQL above, even though we only explicitly mentioned a salary constraint on the results, because of the
enabled filter the query will return only currently active employees who have a salary greater than a million
dollars.

Note: if you plan on using filters with outer joining (either through HQL or load fetching) be careful of the dir-
ection of the condition expression. It's safest to set this up for left outer joining; in general, place the parameter
first followed by the column name(s) after the operator.

Default all filter definitions are applied to <many-to-one/> and <one-to-one/> elements. You can turn off this
behaviour by using use-many-to-one attribute on <filter-def/> element.

<filter-def name="effectiveDate" use-many-to-one="false"/>

Filtering data

NHibernate 5.1 165

Chapter 20. Improving performance

20.1. Fetching strategies

A fetching strategy is the strategy NHibernate will use for retrieving associated objects if the application needs
to navigate the association. Fetch strategies may be declared in the O/R mapping metadata, or overridden by a
particular HQL or Criteria query.

NHibernate defines the following fetching strategies:

• Join fetching - NHibernate retrieves the associated instance or collection in the same SELECT, using an OUT-

ER JOIN.

• Select fetching - a second SELECT is used to retrieve the associated entity or collection. Unless you explicitly
disable lazy fetching by specifying lazy="false", this second select will only be executed when you actu-
ally access the association.

• Subselect fetching - a second SELECT is used to retrieve the associated collections for all entities retrieved in
a previous query or fetch. Unless you explicitly disable lazy fetching by specifying lazy="false", this
second select will only be executed when you actually access the association.

• "Extra-lazy" collection fetching - individual elements of the collection are accessed from the database as
needed. NHibernate tries not to fetch the whole collection into memory unless absolutely needed (suitable
for very large collections)

• Batch fetching - an optimization strategy for select fetching - NHibernate retrieves a batch of entity in-
stances or collections in a single SELECT, by specifying a list of primary keys or foreign keys.

NHibernate also distinguishes between:

• Immediate fetching - an association, collection or attribute is fetched immediately, when the owner is
loaded.

• Lazy collection fetching - a collection is fetched when the application invokes an operation upon that collec-
tion. (This is the default for collections.)

• Proxy fetching - a single-valued association is fetched when a method other than the identifier getter is in-
voked upon the associated object.

We have two orthogonal notions here: when is the association fetched, and how is it fetched (what SQL is
used). Don't confuse them! We use fetch to tune performance. We may use lazy to define a contract for what
data is always available in any detached instance of a particular class.

20.1.1. Working with lazy associations

By default, NHibernate uses lazy select fetching for collections and lazy proxy fetching for single-valued asso-
ciations. These defaults make sense for almost all associations in almost all applications.

However, lazy fetching poses one problem that you must be aware of. Access to a lazy association outside of
the context of an open NHibernate session will result in an exception. For example:

NHibernate 5.1 166

IDictionary<string, int> permissions;
using (var s = sessions.OpenSession())
using (Transaction tx = s.BeginTransaction())
{

User u = s.CreateQuery("from User u where u.Name=:userName")
.SetString("userName", userName).UniqueResult<User>();

permissions = u.Permissions;

tx.Commit();
}

int accessLevel = permissions["accounts"]; // Error!

Since the permissions collection was not initialized when the ISession was closed, the collection will not be
able to load its state. NHibernate does not support lazy initialization for detached objects. The fix is to move
the code that reads from the collection to just before the transaction is committed.

Alternatively, we could use a non-lazy collection or association, by specifying lazy="false" for the associ-
ation mapping. However, it is intended that lazy initialization be used for almost all collections and associ-
ations. If you define too many non-lazy associations in your object model, NHibernate will end up needing to
fetch the entire database into memory in every transaction!

On the other hand, we often want to choose join fetching (which is non-lazy by nature) instead of select fetch-
ing in a particular transaction. We'll now see how to customize the fetching strategy. In NHibernate, the mech-
anisms for choosing a fetch strategy are identical for single-valued associations and collections.

20.1.2. Tuning fetch strategies

Select fetching (the default) is extremely vulnerable to N+1 selects problems, so we might want to enable join
fetching in the mapping document:

<set name="Permissions"
fetch="join">

<key column="userId"/>
<one-to-many class="Permission"/>

</set

<many-to-one name="Mother" class="Cat" fetch="join"/>

The fetch strategy defined in the mapping document affects:

• retrieval via Get() or Load()

• retrieval that happens implicitly when an association is navigated

• ICriteria queries

• HQL queries if subselect fetching is used

No matter what fetching strategy you use, the defined non-lazy graph is guaranteed to be loaded into memory.
Note that this might result in several immediate selects being used to execute a particular HQL query.

Usually, we don't use the mapping document to customize fetching. Instead, we keep the default behavior, and
override it for a particular transaction, using left join fetch in HQL. This tells NHibernate to fetch the asso-
ciation eagerly in the first select, using an outer join. In the ICriteria query API, you would use SetFetch-

Mode(FetchMode.Join).

Improving performance

NHibernate 5.1 167

If you ever feel like you wish you could change the fetching strategy used by Get() or Load(), simply use a
ICriteria query, for example:

User user = session.CreateCriteria(typeof(User))
.SetFetchMode("Permissions", FetchMode.Join)
.Add(Expression.Eq("Id", userId))
.UniqueResult<User>();

(This is NHibernate's equivalent of what some ORM solutions call a "fetch plan".)

A completely different way to avoid problems with N+1 selects is to use the second-level cache, or to enable
batch fetching.

20.1.3. Single-ended association proxies

Lazy fetching for collections is implemented using NHibernate's own implementation of persistent collections.
However, a different mechanism is needed for lazy behavior in single-ended associations. The target entity of
the association must be proxied. NHibernate implements lazy initializing proxies for persistent objects using
runtime bytecode enhancement.

By default, NHibernate generates proxies (at startup) for all persistent classes and uses them to enable lazy
fetching of many-to-one and one-to-one associations.

The mapping file may declare an interface to use as the proxy interface for that class, with the proxy attribute.
By default, NHibernate uses a subclass of the class. Note that the proxied class must implement a non-private
default constructor. We recommend this constructor for all persistent classes!

There are some gotchas to be aware of when extending this approach to polymorphic classes, eg.

<class name="Cat" proxy="Cat">
......
<subclass name="DomesticCat">

.....
</subclass>

</class>

Firstly, instances of Cat will never be castable to DomesticCat, even if the underlying instance is an instance of
DomesticCat:

// instantiate a proxy (does not hit the db)
Cat cat = session.Load<Cat>(id);
// hit the db to initialize the proxy
if (cat.IsDomesticCat) {

DomesticCat dc = (DomesticCat) cat; // Error!
....

}

Secondly, it is possible to break proxy ==.

// instantiate a Cat proxy
Cat cat = session.Load<Cat>(id);
DomesticCat dc =

// acquire new DomesticCat proxy!
session.Load<DomesticCat>(id);

Console.WriteLine(cat == dc); // false

However, the situation is not quite as bad as it looks. Even though we now have two references to different
proxy objects, the underlying instance will still be the same object:

Improving performance

NHibernate 5.1 168

cat.Weight = 11.0; // hit the db to initialize the proxy
Console.WriteLine(dc.Weight); // 11.0

Third, you may not use a proxy for a sealed class or a class with any non-overridable public members.

Finally, if your persistent object acquires any resources upon instantiation (eg. in initializers or default con-
structor), then those resources will also be acquired by the proxy. The proxy class is an actual subclass of the
persistent class.

These problems are all due to fundamental limitations in .NET's single inheritance model. If you wish to avoid
these problems your persistent classes must each implement an interface that declares its business methods.
You should specify these interfaces in the mapping file. eg.

<class name="CatImpl" proxy="ICat">
......
<subclass name="DomesticCatImpl" proxy="IDomesticCat">

.....
</subclass>

</class>

where CatImpl implements the interface ICat and DomesticCatImpl implements the interface IDomesticCat.
Then proxies for instances of ICat and IDomesticCat may be returned by Load() or Enumerable(). (Note that
List() does not usually return proxies.)

ICat cat = session.Load<CatImpl>(catid);
using(var iter = session

.CreateQuery("from CatImpl as cat where cat.Name='fritz'")

.Enumerable<CatImpl>()

.GetEnumerator())
{

iter.MoveNext();
ICat fritz = iter.Current;

}

Relationships are also lazily initialized. This means you must declare any properties to be of type ICat, not
CatImpl.

Certain operations do not require proxy initialization

• Equals(), if the persistent class does not override Equals()

• GetHashCode(), if the persistent class does not override GetHashCode()

• The identifier getter method

NHibernate will detect persistent classes that override Equals() or GetHashCode().

20.1.4. Initializing collections and proxies

A LazyInitializationException will be thrown by NHibernate if an uninitialized collection or proxy is ac-
cessed outside of the scope of the ISession, ie. when the entity owning the collection or having the reference to
the proxy is in the detached state.

Sometimes we need to ensure that a proxy or collection is initialized before closing the ISession. Of course,
we can alway force initialization by calling cat.Sex or cat.Kittens.Count, for example. But that is confusing
to readers of the code and is not convenient for generic code.

The static methods NHibernateUtil.Initialize() and NHibernateUtil.IsInitialized() provide the ap-
plication with a convenient way of working with lazily initialized collections or proxies. NHibernateUt-

Improving performance

NHibernate 5.1 169

il.Initialize(cat) will force the initialization of a proxy, cat, as long as its ISession is still open. NHibern-
ateUtil.Initialize(cat.Kittens) has a similar effect for the collection of kittens.

Another option is to keep the ISession open until all needed collections and proxies have been loaded. In some
application architectures, particularly where the code that accesses data using NHibernate, and the code that
uses it are in different application layers or different physical processes, it can be a problem to ensure that the
ISession is open when a collection is initialized. There are two basic ways to deal with this issue:

• In a web-based application, a HttpModule can be used to close the ISession only at the very end of a user
request, once the rendering of the view is complete (the Open Session in View pattern). Of course, this
places heavy demands on the correctness of the exception handling of your application infrastructure. It is
vitally important that the ISession is closed and the transaction ended before returning to the user, even
when an exception occurs during rendering of the view. See the NHibernate Wiki for examples of this
"Open Session in View" pattern.

• In an application with a separate business tier, the business logic must "prepare" all collections that will be
needed by the web tier before returning. This means that the business tier should load all the data and return
all the data already initialized to the presentation/web tier that is required for a particular use case. Usually,
the application calls NHibernateUtil.Initialize() for each collection that will be needed in the web tier
(this call must occur before the session is closed) or retrieves the collection eagerly using a NHibernate
query with a FETCH clause or a FetchMode.Join in ICriteria. This is usually easier if you adopt the Com-
mand pattern instead of a Session Facade.

• You may also attach a previously loaded object to a new ISession with Merge() or Lock() before access-
ing uninitialized collections (or other proxies). No, NHibernate does not, and certainly should not do this
automatically, since it would introduce ad hoc transaction semantics!

Sometimes you don't want to initialize a large collection, but still need some information about it (like its size)
or a subset of the data.

You can use a collection filter to get the size of a collection without initializing it:

s.CreateFilter(collection, "select count(*)").UniqueResult<long>()

The CreateFilter() method is also used to efficiently retrieve subsets of a collection without needing to ini-
tialize the whole collection:

s.CreateFilter(lazyCollection, "").SetFirstResult(0).SetMaxResults(10).List<Entity>();

20.1.5. Using batch fetching

NHibernate can make efficient use of batch fetching, that is, NHibernate can load several uninitialized proxies
if one proxy is accessed (or collections). Batch fetching is an optimization of the lazy select fetching strategy.
There are two ways you can tune batch fetching: on the class and the collection level.

Batch fetching for classes/entities is easier to understand. Imagine you have the following situation at runtime:
You have 25 Cat instances loaded in an ISession, each Cat has a reference to its Owner, a Person. The Person

class is mapped with a proxy, lazy="true". If you now iterate through all cats and call cat.Owner on each,
NHibernate will by default execute 25 SELECT statements, to retrieve the proxied owners. You can tune this be-
havior by specifying a batch-size in the mapping of Person:

<class name="Person" batch-size="10">...</class>

Improving performance

NHibernate 5.1 170

NHibernate will now execute only three queries, the pattern is 10, 10, 5.

You may also enable batch fetching of collections. For example, if each Person has a lazy collection of Cats,
and 10 persons are currently loaded in the ISesssion, iterating through all persons will generate 10 SELECTs,
one for every call to person.Cats. If you enable batch fetching for the Cats collection in the mapping of Per-
son, NHibernate can pre-fetch collections:

<class name="Person">
<set name="Cats" batch-size="3">

...
</set>

</class>

With a batch-size of 3, NHibernate will load 3, 3, 3, 1 collections in four SELECTs. Again, the value of the at-
tribute depends on the expected number of uninitialized collections in a particular Session.

Batch fetching of collections is particularly useful if you have a nested tree of items, ie. the typical bill-
of-materials pattern. (Although a nested set or a materialized path might be a better option for read-mostly
trees.)

Note: if you set default_batch_fetch_size in configuration, NHibernate will configure the batch fetch optim-
ization for lazy fetching globally. Batch sizes specified at more granular level take precedence.

20.1.6. Using subselect fetching

If one lazy collection or single-valued proxy has to be fetched, NHibernate loads all of them, re-running the ori-
ginal query in a subselect. This works in the same way as batch-fetching, without the piecemeal loading.

20.2. The Second Level Cache

A NHibernate ISession is a transaction-level cache of persistent data. It is possible to configure a cluster or
process-level (ISessionFactory-level) cache on a class-by-class and collection-by-collection basis. You may
even plug in a clustered cache. Be careful. Caches are never aware of changes made to the persistent store by
another application (though they may be configured to regularly expire cached data). In NHibernate 1.x the
second level cache does not work correctly in combination with distributed transactions.

The second level cache requires the use of transactions, be it through transaction scopes or NHibernate transac-
tions. Interacting with the data store without an explicit transaction is discouraged, and will not allow the
second level cache to work as intended.

By default, NHibernate uses HashtableCache for process-level caching. You may choose a different imple-
mentation by specifying the name of a class that implements NHibernate.Cache.ICacheProvider using the
property cache.provider_class.

Table 20.1. Cache Providers

Cache Provider class Type Cluster Safe Query Cache
Supported

Hashtable
(not intended
for produc-
tion use)

NHibern-

ate.Cache.HashtableCacheProvider

memory yes

Improving performance

NHibernate 5.1 171

Cache Provider class Type Cluster Safe Query Cache
Supported

ASP.NET
Cache
(System.Web.
Cache)

NHibern-

ate.Caches.SysCache.SysCacheProvider,

NHibernate.Caches.SysCache

memory yes

Prevalence
Cache

NHibern-

ate.Caches.Prevalence.PrevalenceCacheP

rovider, NHibernate.Caches.Prevalence

memory, disk yes

20.2.1. Cache mappings

The <cache> element of a class or collection mapping has the following form:

<cache
usage="read-write|nonstrict-read-write|read-only" (1)
region="RegionName" (2)

/>

(1) usage specifies the caching strategy: read-write, nonstrict-read-write or read-only
(2) region (optional, defaults to the class or collection role name) specifies the name of the second level

cache region

Alternatively (preferably?), you may specify <class-cache> and <collection-cache> elements in hibern-

ate.cfg.xml.

The usage attribute specifies a cache concurrency strategy.

20.2.2. Strategy: read only

If your application needs to read but never modify instances of a persistent class, a read-only cache may be
used. This is the simplest and best performing strategy. Its even perfectly safe for use in a cluster.

<class name="Eg.Immutable" mutable="false">
<cache usage="read-only"/>
....

</class>

20.2.3. Strategy: read/write

If the application needs to update data, a read-write cache might be appropriate. This cache strategy should
never be used if serializable transaction isolation level is required. You should ensure that the transaction is
completed when ISession.Close() or ISession.Disconnect() is called. If you wish to use this strategy in a
cluster, you should ensure that the underlying cache implementation supports locking. The built-in cache pro-
viders do not.

<class name="eg.Cat" >
<cache usage="read-write"/>
....
<set name="Kittens" ... >

<cache usage="read-write"/>
....

</set>

Improving performance

NHibernate 5.1 172

</class>

20.2.4. Strategy: nonstrict read/write

If the application only occasionally needs to update data (ie. if it is extremely unlikely that two transactions
would try to update the same item simultaneously) and strict transaction isolation is not required, a nonstrict-

read-write cache might be appropriate. When using this strategy you should ensure that the transaction is
completed when ISession.Close() or ISession.Disconnect() is called.

The following table shows which providers are compatible with which concurrency strategies.

Table 20.2. Cache Concurrency Strategy Support

Cache read-only nonstrict-read-write read-write

Hashtable (not intended
for production use)

yes yes yes

SysCache yes yes yes

PrevalenceCache yes yes yes

Refer to Chapter 26, NHibernate.Caches for more details.

20.3. Managing the caches

Whenever you pass an object to Save(), Update() or SaveOrUpdate() and whenever you retrieve an object us-
ing Load(), Get(), List(), or Enumerable(), that object is added to the internal cache of the ISession.

When Flush() is subsequently called, the state of that object will be synchronized with the database. If you do
not want this synchronization to occur or if you are processing a huge number of objects and need to manage
memory efficiently, the Evict() method may be used to remove the object and its collections from the first-
level cache.

IEnumerable<Cat> cats = sess
.CreateQuery("from Eg.Cat as cat")
.List<Cat>(); //a huge result set

foreach (Cat cat in cats)
{

DoSomethingWithACat(cat);
sess.Evict(cat);

}

NHibernate will evict associated entities automatically if the association is mapped with cascade="all" or
cascade="all-delete-orphan".

The ISession also provides a Contains() method to determine if an instance belongs to the session cache.

To completely evict all objects from the session cache, call ISession.Clear()

For the second-level cache, there are methods defined on ISessionFactory for evicting the cached state of an
instance, entire class, collection instance or entire collection role.

//evict a particular Cat

Improving performance

NHibernate 5.1 173

sessionFactory.Evict(typeof(Cat), catId);
//evict all Cats
sessionFactory.Evict(typeof(Cat));
//evict a particular collection of kittens
sessionFactory.EvictCollection("Eg.Cat.Kittens", catId);
//evict all kitten collections
sessionFactory.EvictCollection("Eg.Cat.Kittens");

20.4. The Query Cache

Query result sets may also be cached. This is only useful for queries that are run frequently with the same para-
meters. To use the query cache you must first enable it:

<property name="cache.use_query_cache">true</property>>

This setting causes the creation of two new cache regions - one holding cached query result sets (NHibern-
ate.Cache.StandardQueryCache), the other holding timestamps of the most recent updates to queryable tables
(UpdateTimestampsCache). Those region names will be prefixed by the cache region prefix if
cache.region_prefix setting is configured.

If you use a cache provider handling an expiration for cached entries, you should set the Update-

TimestampsCache region expiration to a value greater than the expiration of query cache regions. (Or disable its
expiration.) Otherwise the query cache may yield stale data.

Note that the query cache does not cache the state of any entities in the result set; it caches only identifier val-
ues and results of value type. So the query cache should always be used in conjunction with the second-level
cache.

Most queries do not benefit from caching, so by default queries are not cached. To enable caching, call
IQuery.SetCacheable(true). This call allows the query to look for existing cache results or add its results to
the cache when it is executed.

If you require fine-grained control over query cache expiration policies, you may specify a named cache region
for a particular query by calling IQuery.SetCacheRegion().

var blogs = sess.CreateQuery("from Blog blog where blog.Blogger = :blogger")
.SetEntity("blogger", blogger)
.SetMaxResults(15)
.SetCacheable(true)
.SetCacheRegion("frontpages")
.List<Blog>();

If the query should force a refresh of its query cache region, you may call IQuery.SetForceCacheRefresh() to
true. This is particularly useful in cases where underlying data may have been updated via a separate process
(i.e., not modified through NHibernate) and allows the application to selectively refresh the query cache regions
based on its knowledge of those events. This is a more efficient alternative to eviction of a query cache region
via ISessionFactory.EvictQueries().

20.5. Understanding Collection performance

We've already spent quite some time talking about collections. In this section we will highlight a couple more
issues about how collections behave at runtime.

Improving performance

NHibernate 5.1 174

20.5.1. Taxonomy

NHibernate defines three basic kinds of collections:

• collections of values

• one to many associations

• many to many associations

This classification distinguishes the various table and foreign key relationships but does not tell us quite
everything we need to know about the relational model. To fully understand the relational structure and per-
formance characteristics, we must also consider the structure of the primary key that is used by NHibernate to
update or delete collection rows. This suggests the following classification:

• indexed collections

• sets

• bags

All indexed collections (maps, lists, arrays) have a primary key consisting of the <key> and <index> columns.
In this case collection updates are usually extremely efficient - the primary key may be efficiently indexed and
a particular row may be efficiently located when NHibernate tries to update or delete it.

Sets have a primary key consisting of <key> and element columns. This may be less efficient for some types of
collection element, particularly composite elements or large text or binary fields; the database may not be able
to index a complex primary key as efficiently. On the other hand, for one to many or many to many associ-
ations, particularly in the case of synthetic identifiers, it is likely to be just as efficient. (Side-note: if you want
SchemaExport to actually create the primary key of a <set> for you, you must declare all columns as not-

null="true".)

<idbag> mappings define a surrogate key, so they are always very efficient to update. In fact, they are the best
case.

Bags are the worst case. Since a bag permits duplicate element values and has no index column, no primary key
may be defined. NHibernate has no way of distinguishing between duplicate rows. NHibernate resolves this
problem by completely removing (in a single DELETE) and recreating the collection whenever it changes. This
might be very inefficient.

Note that for a one-to-many association, the "primary key" may not be the physical primary key of the database
table - but even in this case, the above classification is still useful. (It still reflects how NHibernate "locates" in-
dividual rows of the collection.)

20.5.2. Lists, maps, idbags and sets are the most efficient collections to up-
date

From the discussion above, it should be clear that indexed collections and (usually) sets allow the most efficient
operation in terms of adding, removing and updating elements.

There is, arguably, one more advantage that indexed collections have over sets for many to many associations
or collections of values. Because of the structure of an ISet, NHibernate doesn't ever UPDATE a row when an

Improving performance

NHibernate 5.1 175

element is "changed". Changes to an ISet always work via INSERT and DELETE (of individual rows). Once
again, this consideration does not apply to one to many associations.

After observing that arrays cannot be lazy, we would conclude that lists, maps and idbags are the most perform-
ant (non-inverse) collection types, with sets not far behind. Sets are expected to be the most common kind of
collection in NHibernate applications. This is because the "set" semantics are most natural in the relational
model.

However, in well-designed NHibernate domain models, we usually see that most collections are in fact one-
to-many associations with inverse="true". For these associations, the update is handled by the many-to-one
end of the association, and so considerations of collection update performance simply do not apply.

20.5.3. Bags and lists are the most efficient inverse collections

Just before you ditch bags forever, there is a particular case in which bags (and also lists) are much more per-
formant than sets. For a collection with inverse="true" (the standard bidirectional one-to-many relationship
idiom, for example) we can add elements to a bag or list without needing to initialize (fetch) the bag elements!
This is because IList.Add() must always succeed for a bag or IList (unlike an ISet). This can make the fol-
lowing common code much faster.

Parent p = sess.Load<Parent>(id);
Child c = new Child();
c.Parent = p;
p.Children.Add(c); //no need to fetch the collection!
sess.Flush();

20.5.4. One shot delete

Occasionally, deleting collection elements one by one can be extremely inefficient. NHibernate isn't completely
stupid, so it knows not to do that in the case of an newly-empty collection (if you called list.Clear(), for ex-
ample). In this case, NHibernate will issue a single DELETE and we are done!

Suppose we add a single element to a collection of size twenty and then remove two elements. NHibernate will
issue one INSERT statement and two DELETE statements (unless the collection is a bag). This is certainly desir-
able.

However, suppose that we remove eighteen elements, leaving two and then add thee new elements. There are
two possible ways to proceed:

• Delete eighteen rows one by one and then insert three rows

• Remove the whole collection (in one SQL DELETE) and insert all five current elements (one by one)

NHibernate isn't smart enough to know that the second option is probably quicker in this case. (And it would
probably be undesirable for NHibernate to be that smart; such behaviour might confuse database triggers, etc.)

Fortunately, you can force this behaviour (ie. the second strategy) at any time by discarding (ie. dereferencing)
the original collection and returning a newly instantiated collection with all the current elements. This can be
very useful and powerful from time to time.

Of course, one-shot-delete does not apply to collections mapped inverse="true".

20.6. Batch updates

Improving performance

NHibernate 5.1 176

NHibernate supports batching SQL update commands (INSERT, UPDATE, DELETE) with the following limitations:

• the NHibernate's drive used for your RDBMS may not supports batching,

• since the implementation uses reflection to access members and types in System.Data assembly which are
not normally visible, it may not function in environments where necessary permissions are not granted,

• optimistic concurrency checking may be impaired since ADO.NET 2.0 does not return the number of rows
affected by each statement in the batch, only the total number of rows affected by the batch.

Update batching is enabled by setting adonet.batch_size to a non-zero value.

20.7. Multi Query

This functionality allows you to execute several HQL queries in one round-trip against the database server. A
simple use case is executing a paged query while also getting the total count of results, in a single round-trip.
Here is a simple example:

IMultiQuery multiQuery = s.CreateMultiQuery()
.Add(s.CreateQuery("from Item i where i.Id > ?")

.SetInt32(0, 50).SetFirstResult(10))
.Add(s.CreateQuery("select count(*) from Item i where i.Id > ?")

.SetInt32(0, 50));
IList results = multiQuery.List();
IList items = (IList)results[0];
long count = (long)((IList)results[1])[0];

The result is a list of query results, ordered according to the order of queries added to the multi query. Named
parameters can be set on the multi query, and are shared among all the queries contained in the multi query, like
this:

IList results = s.CreateMultiQuery()
.Add(s.CreateQuery("from Item i where i.Id > :id")

.SetFirstResult(10))
.Add("select count(*) from Item i where i.Id > :id")
.SetInt32("id", 50)
.List();

IList items = (IList)results[0];
long count = (long)((IList)results[1])[0];

Positional parameters are not supported on the multi query, only on the individual queries.

As shown above, if you do not need to configure the query separately, you can simply pass the HQL directly to
the IMultiQuery.Add() method.

Multi query is executed by concatenating the queries and sending the query to the database as a single string.
This means that the database should support returning several result sets in a single query. At the moment this
functionality is only enabled for Microsoft SQL Server and SQLite.

Note that the database server is likely to impose a limit on the maximum number of parameters in a query, in
which case the limit applies to the multi query as a whole. Queries using in with a large number of arguments
passed as parameters may easily exceed this limit. For example, SQL Server has a limit of 2,100 parameters per
round-trip, and will throw an exception executing this query:

IList allEmployeesId = ...; //1,500 items
IMultiQuery multiQuery = s.CreateMultiQuery()

.Add(s.CreateQuery("from Employee e where e.Id in :empIds")

Improving performance

NHibernate 5.1 177

.SetParameter("empIds", allEmployeesId).SetFirstResult(10))
.Add(s.CreateQuery("select count(*) from Employee e where e.Id in :empIds")

.SetParameter("empIds", allEmployeesId));
IList results = multiQuery.List(); // will throw an exception from SQL Server

An interesting usage of this feature is to load several collections of an object in one round-trip, without an ex-
pensive cartesian product (blog * users * posts).

Blog blog = s.CreateMultiQuery()
.Add("select b from Blog b left join fetch b.Users where b.Id = :id")
.Add("select b from Blog b left join fetch b.Posts where b.Id = :id")
.SetInt32("id", 123)
.UniqueResult<Blog>();

20.8. Multi Criteria

This is the counter-part to Multi Query, and allows you to perform several criteria queries in a single round trip.
A simple use case is executing a paged query while also getting the total count of results, in a single round-trip.
Here is a simple example:

IMultiCriteria multiCrit = s.CreateMultiCriteria()
.Add(s.CreateCriteria(typeof(Item))

.Add(Expression.Gt("Id", 50))

.SetFirstResult(10))
.Add(s.CreateCriteria(typeof(Item))

.Add(Expression.Gt("Id", 50))

.SetProject(Projections.RowCount()));
IList results = multiCrit.List();
IList items = (IList)results[0];
long count = (long)((IList)results[1])[0];

The result is a list of query results, ordered according to the order of queries added to the multi criteria.

You can add ICriteria or DetachedCriteria to the Multi Criteria query. In fact, using DetachedCriteria in
this fashion has some interesting implications.

DetachedCriteria customersCriteria = AuthorizationService.GetAssociatedCustomersQuery();
IList results = session.CreateMultiCriteria()

.Add(customersCriteria)

.Add(DetachedCriteria.For<Policy>()
.Add(Subqueries.PropertyIn("id",

CriteriaTransformer.Clone(customersCriteria)
.SetProjection(Projections.Id())

)))
.List();

ICollection<Customer> customers = CollectionHelper.ToArray<Customer>(results[0]);
ICollection<Policy> policies = CollectionHelper.ToArray<Policy>(results[1]);

As you see, we get a query that represents the customers we can access, and then we can utilize this query fur-
ther in order to perform additional logic (getting the policies of the customers we are associated with), all in a
single database round-trip.

Improving performance

NHibernate 5.1 178

Chapter 21. Toolset Guide
Roundtrip engineering with NHibernate is possible using a set of commandline tools maintained as part of the
NHibernate project, along with NHibernate support built into various code generation tools (MyGeneration,
CodeSmith, ObjectMapper, AndroMDA).

The NHibernate main package comes bundled with the most important tool (it can even be used from "inside"
NHibernate on-the-fly):

• DDL schema generation from a mapping file (aka SchemaExport, hbm2ddl)

Other tools directly provided by the NHibernate project are delivered with a separate package, NHibernateCon-
trib. This package includes tools for the following tasks:

• mapping file generation from .NET classes marked with attributes (NHibernate.Mapping.Attributes, or
NHMA for short)

Third party tools with NHibernate support are:

• CodeSmith, MyGeneration, and ObjectMapper (mapping file generation from an existing database schema)

• AndroMDA (MDA (Model-Driven Architecture) approach generating code for persistent classes from
UML diagrams and their XML/XMI representation)

These 3rd party tools are not documented in this reference. Please refer to the NHibernate website for up-
to-date information.

21.1. Schema Generation

The generated schema includes referential integrity constraints (primary and foreign keys) for entity and collec-
tion tables. Tables and sequences are also created for mapped identifier generators.

You must specify a SQL Dialect via the hibernate.dialect property when using this tool.

21.1.1. Customizing the schema

Many NHibernate mapping elements define an optional attribute named length. You may set the length of a
column with this attribute. (Or, for numeric/decimal data types, the precision.)

Some tags also accept a not-null attribute (for generating a NOT NULL constraint on table columns) and a
unique attribute (for generating UNIQUE constraint on table columns).

Some tags accept an index attribute for specifying the name of an index for that column. A unique-key attrib-
ute can be used to group columns in a single unit key constraint. Currently, the specified value of the unique-

key attribute is not used to name the constraint, only to group the columns in the mapping file.

Examples:

<property name="Foo" type="String" length="64" not-null="true"/>

<many-to-one name="Bar" foreign-key="fk_foo_bar" not-null="true"/>

NHibernate 5.1 179

<element column="serial_number" type="Int64" not-null="true" unique="true"/>

Alternatively, these elements also accept a child <column> element. This is particularly useful for multi-column
types:

<property name="Foo" type="String">
<column name="foo" length="64" not-null="true" sql-type="text"/>

</property>

<property name="Bar" type="My.CustomTypes.MultiColumnType, My.CustomTypes"/>
<column name="fee" not-null="true" index="bar_idx"/>
<column name="fi" not-null="true" index="bar_idx"/>
<column name="fo" not-null="true" index="bar_idx"/>

</property>

The sql-type attribute allows the user to override the default mapping of NHibernate type to SQL data type.

The check attribute allows you to specify a check constraint.

<property name="Foo" type="Int32">
<column name="foo" check="foo > 10"/>

</property>

<class name="Foo" table="foos" check="bar < 100.0">
...
<property name="Bar" type="Single"/>

</class>

Table 21.1. Summary

Attribute Values Interpretation

length number column length/decimal precision

not-null true|false specifies that the column should be non-nullable

unique true|false specifies that the column should have a unique constraint

index index_name specifies the name of a (multi-column) index

unique-key unique_key_name specifies the name of a multi-column unique constraint

foreign-key foreign_key_name specifies the name of the foreign key constraint generated
for an association, use it on <one-to-one>, <many-to-one>,
<key>, and <many-to-many> mapping elements. Note that
inverse="true" sides will not be considered by SchemaEx-

port.

sql-type column_type overrides the default column type (attribute of <column>

element only)

check SQL expression create an SQL check constraint on either column or table

21.1.2. Running the tool

The SchemaExport tool writes a DDL script to standard out and/or executes the DDL statements.

Toolset Guide

NHibernate 5.1 180

You may embed SchemaExport in your application:

Configuration cfg =;
new SchemaExport(cfg).Create(false, true);

Toolset Guide

NHibernate 5.1 181

Chapter 22. Example: Parent/Child
One of the very first things that new users try to do with NHibernate is to model a parent / child type relation-
ship. There are two different approaches to this. For various reasons the most convenient approach, especially
for new users, is to model both Parent and Child as entity classes with a <one-to-many> association from Par-

ent to Child. (The alternative approach is to declare the Child as a <composite-element>.) Now, it turns out
that default semantics of a one to many association (in NHibernate) are much less close to the usual semantics
of a parent / child relationship than those of a composite element mapping. We will explain how to use a bid-
irectional one to many association with cascades to model a parent / child relationship efficiently and eleg-
antly. It's not at all difficult!

22.1. A note about collections

NHibernate collections are considered to be a logical part of their owning entity; never of the contained entities.
This is a crucial distinction! It has the following consequences:

• When we remove / add an object from / to a collection, the version number of the collection owner is incre-
mented.

• If an object that was removed from a collection is an instance of a value type (eg, a composite element), that
object will cease to be persistent and its state will be completely removed from the database. Likewise,
adding a value type instance to the collection will cause its state to be immediately persistent.

• On the other hand, if an entity is removed from a collection (a one-to-many or many-to-many association),
it will not be deleted, by default. This behavior is completely consistent - a change to the internal state of
another entity should not cause the associated entity to vanish! Likewise, adding an entity to a collection
does not cause that entity to become persistent, by default.

Instead, the default behavior is that adding an entity to a collection merely creates a link between the two entit-
ies, while removing it removes the link. This is very appropriate for all sorts of cases. Where it is not appropri-
ate at all is the case of a parent / child relationship, where the life of the child is bound to the lifecycle of the
parent.

22.2. Bidirectional one-to-many

Suppose we start with a simple <one-to-many> association from Parent to Child.

<set name="Children">
<key column="parent_id" />
<one-to-many class="Child" />

</set>

If we were to execute the following code

Parent p =;
Child c = new Child();
p.Children.Add(c);
session.Save(c);
session.Flush();

NHibernate would issue two SQL statements:

NHibernate 5.1 182

• an INSERT to create the record for c

• an UPDATE to create the link from p to c

This is not only inefficient, but also violates any NOT NULL constraint on the parent_id column.

The underlying cause is that the link (the foreign key parent_id) from p to c is not considered part of the state
of the Child object and is therefore not created in the INSERT. So the solution is to make the link part of the
Child mapping.

<many-to-one name="Parent" column="parent_id" not-null="true"/>

(We also need to add the Parent property to the Child class.)

Now that the Child entity is managing the state of the link, we tell the collection not to update the link. We use
the inverse attribute.

<set name="Children" inverse="true">
<key column="parent_id"/>
<one-to-many class="Child"/>

</set>

The following code would be used to add a new Child.

Parent p = session.Load<Parent>(pid);
Child c = new Child();
c.Parent = p;
p.Children.Add(c);
session.Save(c);
session.Flush();

And now, only one SQL INSERT would be issued!

To tighten things up a bit, we could create an AddChild() method of Parent.

public void AddChild(Child c)
{

c.Parent = this;
children.Add(c);

}

Now, the code to add a Child looks like

Parent p = session.Load<Parent>(pid);
Child c = new Child();
p.AddChild(c);
session.Save(c);
session.Flush();

22.3. Cascading lifecycle

The explicit call to Save() is still annoying. We will address this by using cascades.

<set name="Children" inverse="true" cascade="all">
<key column="parent_id"/>
<one-to-many class="Child"/>

</set>

Example: Parent/Child

NHibernate 5.1 183

This simplifies the code above to

Parent p = session.Load<Parent>(pid);
Child c = new Child();
p.AddChild(c);
session.Flush();

Similarly, we don't need to iterate over the children when saving or deleting a Parent. The following removes p
and all its children from the database.

Parent p = session.Load<Parent>(pid);
session.Delete(p);
session.Flush();

However, this code

Parent p = session.Load<Parent>(pid);
// Get one child out of the set
IEnumerator childEnumerator = p.Children.GetEnumerator();
childEnumerator.MoveNext();
Child c = (Child) childEnumerator.Current;

p.Children.Remove(c);
c.Parent = null;
session.Flush();

will not remove c from the database; it will only remove the link to p (and cause a NOT NULL constraint viola-
tion, in this case). You need to explicitly Delete() the Child.

Parent p = session.Load<Parent>(pid);
// Get one child out of the set
IEnumerator childEnumerator = p.Children.GetEnumerator();
childEnumerator.MoveNext();
Child c = (Child) childEnumerator.Current;

p.Children.Remove(c);
session.Delete(c);
session.Flush();

Now, in our case, a Child can't really exist without its parent. So if we remove a Child from the collection, we
really do want it to be deleted. For this, we must use cascade="all-delete-orphan".

<set name="Children" inverse="true" cascade="all-delete-orphan">
<key column="parent_id"/>
<one-to-many class="Child"/>

</set>

Note: even though the collection mapping specifies inverse="true", cascades are still processed by iterating
the collection elements. So if you require that an object be saved, deleted or updated by cascade, you must add
it to the collection. It is not enough to simply set its parent.

22.4. Using cascading Update()

Suppose we loaded up a Parent in one ISession, made some changes in a UI action and wish to persist these
changes in a new ISession (by calling Update()). The Parent will contain a collection of children and, since
cascading update is enabled, NHibernate needs to know which children are newly instantiated and which rep-
resent existing rows in the database. Let's assume that both Parent and Child have (synthetic) identifier proper-
ties of type long. NHibernate will use the identifier property value to determine which of the children are new.

Example: Parent/Child

NHibernate 5.1 184

(You may also use the version or timestamp property, see Section 9.4.2, “Updating detached objects”.)

The unsaved-value attribute is used to specify the identifier value of a newly instantiated instance. In
NHibernate it is not necessary to specify unsaved-value explicitly.

The following code will update parent and child and insert newChild.

//parent and child were both loaded in a previous session
parent.AddChild(child);
Child newChild = new Child();
parent.AddChild(newChild);
session.Update(parent);
session.Flush();

Well, that is all very well for the case of a generated identifier, but what about assigned identifiers and compos-
ite identifiers? This is more difficult, since unsaved-value can't distinguish between a newly instantiated object
(with an identifier assigned by the user) and an object loaded in a previous session. In these cases, you will
probably need to give NHibernate a hint; either

• define an unsaved-value on a <version> or <timestamp> property mapping for the class.

• set unsaved-value="none" and explicitly Save() newly instantiated children before calling Up-

date(parent)

• set unsaved-value="any" and explicitly Update() previously persistent children before calling Up-

date(parent)

null is the default unsaved-value for assigned identifiers, none is the default unsaved-value for composite
identifiers.

There is one further possibility. There is a new IInterceptor method named IsTransient() which lets the ap-
plication implement its own strategy for distinguishing newly instantiated objects. For example, you could
define a base class for your persistent classes.

public class Persistent
{

private bool _saved = false;

public void OnSave()
{

_saved = true;
}

public void OnLoad()
{

_saved = true;
}

public void OnDelete()
{

_saved = false;
}

......

public bool IsSaved
{

get { return _saved; }
}

}

(The saved property is non-persistent.) Now implement IsTransient(), along with OnLoad(), OnSave() and

Example: Parent/Child

NHibernate 5.1 185

OnDelete() as follows.

public object IsTransient(object entity)
{

if (entity is Persistent)
{

return !((Persistent) entity).IsSaved;
}
else
{

return null;
}

}

public bool OnLoad(object entity,
object id,
object[] state,
string[] propertyNames,
IType[] types)

{
if (entity is Persistent) ((Persistent) entity).OnLoad();
return false;

}

public boolean OnSave(object entity,
object id,
object[] state,
string[] propertyNames,
IType[] types)

{
if (entity is Persistent) ((Persistent) entity).OnSave();
return false;

}

public virtual void OnDelete(object entity,
object id,
object[] state,
string[] propertyNames,
IType[] types)

{
if (entity is Persistent) ((Persistent) entity).OnDelete();

}

22.5. Conclusion

There is quite a bit to digest here and it might look confusing first time around. However, in practice, it all
works out quite nicely. Most NHibernate applications use the parent / child pattern in many places.

We mentioned an alternative in the first paragraph. None of the above issues exist in the case of
<composite-element> mappings, which have exactly the semantics of a parent / child relationship. Unfortu-
nately, there are two big limitations to composite element classes: composite elements may not own collections,
and they should not be the child of any entity other than the unique parent. (However, they may have a surrog-
ate primary key, using an <idbag> mapping.)

Example: Parent/Child

NHibernate 5.1 186

Chapter 23. Example: Weblog Application

23.1. Persistent Classes

The persistent classes represent a weblog, and an item posted in a weblog. They are to be modelled as a stand-
ard parent/child relationship, but we will use an ordered bag, instead of a set.

using System;
using System.Collections.Generic;

namespace Eg
{

public class Blog
{

public virtual long Id { get; set;}

public virtual IList<BlogItem> Items { get; set;}

public virtual string Name { get; set;}
}

}

using System;

namespace Eg
{

public class BlogItem
{

public virtual Blog Blog { get; set;}

public virtual DateTime DateTime { get; set;}

public virtual long Id { get; set;}

public virtual string Text { get; set;}

public virtual string Title { get; set;}
}

}

23.2. NHibernate Mappings

The XML mappings should now be quite straightforward.

<?xml version="1.0" encoding="utf-8"?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"

assembly="Eg" namespace="Eg">

<class
name="Blog"
table="BLOGS"
lazy="true">

<id
name="Id"
column="BLOG_ID">

<generator class="native"/>

</id>

NHibernate 5.1 187

<property
name="Name"
column="NAME"
not-null="true"
unique="true"/>

<bag
name="Items"
inverse="true"
lazy="true"
order-by="DATE_TIME"
cascade="all">

<key column="BLOG_ID"/>
<one-to-many class="BlogItem"/>

</bag>

</class>

</hibernate-mapping>

<?xml version="1.0" encoding="utf-8"?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"

assembly="Eg" namespace="Eg">

<class
name="BlogItem"
table="BLOG_ITEMS"
dynamic-update="true">

<id
name="Id"
column="BLOG_ITEM_ID">

<generator class="native"/>

</id>

<property
name="Title"
column="TITLE"
not-null="true"/>

<property
name="Text"
column="TEXT"
not-null="true"/>

<property
name="DateTime"
column="DATE_TIME"
not-null="true"/>

<many-to-one
name="Blog"
column="BLOG_ID"
not-null="true"/>

</class>

</hibernate-mapping>

23.3. NHibernate Code

The following class demonstrates some of the kinds of things we can do with these classes, using NHibernate.

Example: Weblog Application

NHibernate 5.1 188

using System;
using System.Collections.Generic;
using NHibernate;
using NHibernate.Cfg;
using NHibernate.Tool.hbm2ddl;

namespace Eg
{

public class BlogMain
{

private ISessionFactory _sessions;

public void Configure()
{

_sessions = new Configuration().Configure()
.BuildSessionFactory();

}

public void ExportTables()
{

var cfg = new Configuration().Configure();
new SchemaExport(cfg).Create(true, true);

}

public Blog CreateBlog(string name)
{

var blog = new Blog
{

Name = name,
Items = new List<BlogItem>()

};

using (var session = _sessions.OpenSession())
using (var tx = session.BeginTransaction())
{

session.Save(blog);
tx.Commit();

}

return blog;
}

public BlogItem CreateBlogItem(Blog blog, string title, string text)
{

var item = new BlogItem
{

Title = title,
Text = text,
Blog = blog,
DateTime = DateTime.Now

};
blog.Items.Add(item);

using (var session = _sessions.OpenSession())
using (var tx = session.BeginTransaction())
{

session.Update(blog);
tx.Commit();

}

return item;
}

public BlogItem CreateBlogItem(long blogId, string title, string text)
{

var item = new BlogItem
{

Title = title,
Text = text,
DateTime = DateTime.Now

};

Example: Weblog Application

NHibernate 5.1 189

using (var session = _sessions.OpenSession())
using (var tx = session.BeginTransaction())
{

var blog = session.Load<Blog>(blogId);
item.Blog = blog;
blog.Items.Add(item);
tx.Commit();

}

return item;
}

public void UpdateBlogItem(BlogItem item, string text)
{

item.Text = text;

using (var session = _sessions.OpenSession())
using (var tx = session.BeginTransaction())
{

session.Update(item);
tx.Commit();

}
}

public void UpdateBlogItem(long itemId, string text)
{

using (var session = _sessions.OpenSession())
using (var tx = session.BeginTransaction())
{

var item = session.Load<BlogItem>(itemId);
item.Text = text;
tx.Commit();

}
}

public IList<object[]> ListAllBlogNamesAndItemCounts(int max)
{

IList<object[]> result;

using (var session = _sessions.OpenSession())
using (var tx = session.BeginTransaction())
{

var q = session.CreateQuery(
"select blog.id, blog.Name, count(blogItem) " +
"from Blog as blog " +
"left outer join blog.Items as blogItem " +
"group by blog.Name, blog.id " +
"order by max(blogItem.DateTime)"

);
q.SetMaxResults(max);
result = q.List<object[]>();
tx.Commit();

}

return result;
}

public Blog GetBlogAndAllItems(long blogId)
{

Blog blog = null;

using (var session = _sessions.OpenSession())
using (var tx = session.BeginTransaction())
{

var q = session.CreateQuery(
"from Blog as blog " +
"left outer join fetch blog.Items " +
"where blog.id = :blogId"

);
q.SetParameter("blogId", blogId);

Example: Weblog Application

NHibernate 5.1 190

blog = q.UniqueResult<Blog>();
tx.Commit();

}

return blog;
}

public IList<object[]> ListBlogsAndRecentItems()
{

IList<object[]> result = null;

using (var session = _sessions.OpenSession())
using (var tx = session.BeginTransaction())
{

var q = session.CreateQuery(
"from Blog as blog " +
"inner join blog.Items as blogItem " +
"where blogItem.DateTime > :minDate"

);

var date = DateTime.Now.AddMonths(-1);
q.SetDateTime("minDate", date);

result = q.List<object[]>();
tx.Commit();

}

return result;
}

}
}

It requires some configuration settings in web.config, such as:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<!-- Add this element -->
<configSections>
<section

name="hibernate-configuration"
type="NHibernate.Cfg.ConfigurationSectionHandler, NHibernate" />

</configSections>

<!-- Add this element -->
<hibernate-configuration xmlns="urn:nhibernate-configuration-2.2">
<session-factory>
<property name="dialect">NHibernate.Dialect.MsSql2012Dialect</property>
<property name="connection.connection_string">

Server=localhost\SQLEXPRESS;initial catalog=Eg;Integrated Security=True
</property>

<mapping assembly="Eg" />
</session-factory>

</hibernate-configuration>

<!-- Leave the other sections unchanged -->
<system.web>
...

</system.web>
</configuration>

Example: Weblog Application

NHibernate 5.1 191

Chapter 24. Example: Various Mappings
This chapter shows off some more complex association mappings.

24.1. Employer/Employee

The following model of the relationship between Employer and Employee uses an actual entity class (Employ-
ment) to represent the association. This is done because there might be more than one period of employment for
the same two parties. Components are used to model monetary values and employee names.

Here's a possible mapping document:

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
assembly="..." namespace="...">

<class name="Employer" table="employers">
<id name="Id">

<generator class="sequence">
<param name="sequence">employer_id_seq</param>

</generator>
</id>
<property name="Name"/>

</class>

<class name="Employment" table="employment_periods">

<id name="Id">
<generator class="sequence">

<param name="sequence">employment_id_seq</param>
</generator>

</id>
<property name="StartDate" column="start_date"/>
<property name="EndDate" column="end_date"/>

<component name="HourlyRate" class="MonetaryAmount">
<property name="Amount">

<column name="hourly_rate" sql-type="NUMERIC(12, 2)"/>
</property>
<property name="Currency" length="12"/>

NHibernate 5.1 192

</component>

<many-to-one name="Employer" column="employer_id" not-null="true"/>
<many-to-one name="Employee" column="employee_id" not-null="true"/>

</class>

<class name="Employee" table="employees">
<id name="Id">

<generator class="sequence">
<param name="sequence">employee_id_seq</param>

</generator>
</id>
<property name="TaxfileNumber"/>
<component name="Name" class="Name">

<property name="FirstName"/>
<property name="Initial"/>
<property name="LastName"/>

</component>
</class>

</hibernate-mapping>

And here's the table schema generated by SchemaExport.

create table employers (
Id BIGINT not null,
Name VARCHAR(255),
primary key (Id)

)

create table employment_periods (
Id BIGINT not null,
hourly_rate NUMERIC(12, 2),
Currency VARCHAR(12),
employee_id BIGINT not null,
employer_id BIGINT not null,
end_date TIMESTAMP,
start_date TIMESTAMP,
primary key (Id)

)

create table employees (
Id BIGINT not null,
FirstName VARCHAR(255),
Initial CHAR(1),
LastName VARCHAR(255),
TaxfileNumber VARCHAR(255),
primary key (Id)

)

alter table employment_periods
add constraint employment_periodsFK0 foreign key (employer_id) references employers

alter table employment_periods
add constraint employment_periodsFK1 foreign key (employee_id) references employees

create sequence employee_id_seq
create sequence employment_id_seq
create sequence employer_id_seq

24.2. Author/Work

Consider the following model of the relationships between Work, Author and Person. We represent the relation-
ship between Work and Author as a many-to-many association. We choose to represent the relationship between
Author and Person as one-to-one association. Another possibility would be to have Author extend Person.

Example: Various Mappings

NHibernate 5.1 193

The following mapping document correctly represents these relationships:

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
assembly="..." namespace="...">

<class name="Work" table="works" discriminator-value="W">

<id name="Id" column="id" generator="native" />

<discriminator column="type" type="character"/>

<property name="Title"/>
<set name="Authors" table="author_work" lazy="true">

<key>
<column name="work_id" not-null="true"/>

</key>
<many-to-many class="Author">

<column name="author_id" not-null="true"/>
</many-to-many>

</set>

<subclass name="Book" discriminator-value="B">
<property name="Text" column="text" />

</subclass>

<subclass name="Song" discriminator-value="S">
<property name="Tempo" column="tempo" />
<property name="Genre" column="genre" />

</subclass>

</class>

<class name="Author" table="authors">

<id name="Id" column="id">
<!-- The Author must have the same identifier as the Person -->
<generator class="assigned"/>

</id>

<property name="Alias" column="alias" />
<one-to-one name="Person" constrained="true"/>

<set name="Works" table="author_work" inverse="true" lazy="true">
<key column="author_id"/>
<many-to-many class="Work" column="work_id"/>

</set>

</class>

Example: Various Mappings

NHibernate 5.1 194

<class name="Person" table="persons">
<id name="Id" column="id">

<generator class="native"/>
</id>
<property name="Name" column="name" />

</class>

</hibernate-mapping>

There are four tables in this mapping. works, authors and persons hold work, author and person data respect-
ively. author_work is an association table linking authors to works. Here is the table schema, as generated by
SchemaExport.

create table works (
id BIGINT not null generated by default as identity,
tempo FLOAT,
genre VARCHAR(255),
text INTEGER,
title VARCHAR(255),
type CHAR(1) not null,
primary key (id)

)

create table author_work (
author_id BIGINT not null,
work_id BIGINT not null,
primary key (work_id, author_id)

)

create table authors (
id BIGINT not null generated by default as identity,
alias VARCHAR(255),
primary key (id)

)

create table persons (
id BIGINT not null generated by default as identity,
name VARCHAR(255),
primary key (id)

)

alter table authors
add constraint authorsFK0 foreign key (id) references persons

alter table author_work
add constraint author_workFK0 foreign key (author_id) references authors

alter table author_work
add constraint author_workFK1 foreign key (work_id) references works

24.3. Customer/Order/Product

Now consider a model of the relationships between Customer, Order and LineItem and Product. There is a
one-to-many association between Customer and Order, but how should we represent Order / LineItem /
Product? I've chosen to map LineItem as an association class representing the many-to-many association
between Order and Product. In NHibernate, this is called a composite element.

Example: Various Mappings

NHibernate 5.1 195

The mapping document:

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
assembly="..." namespace="...">

<class name="Customer" table="customers">
<id name="Id" column="id" generator="native" />
<property name="Name" column="name"/>
<set name="Orders" inverse="true" lazy="true">

<key column="customer_id"/>
<one-to-many class="Order"/>

</set>
</class>

<class name="Order" table="orders">
<id name="Id" column="id" generator="native" />
<property name="Date" column="date"/>
<many-to-one name="Customer" column="customer_id"/>
<list name="LineItems" table="line_items" lazy="true">

<key column="order_id"/>
<index column="line_number"/>
<composite-element class="LineItem">

<property name="Quantity" column="quantity"/>
<many-to-one name="Product" column="product_id"/>

</composite-element>
</list>

</class>

<class name="Product" table="products">
<id name="Id" column="id">

<generator class="native"/>
</id>
<property name="SerialNumber" column="serial_number" />

</class>

</hibernate-mapping>

customers, orders, line_items and products hold customer, order, order line item and product data respect-
ively. line_items also acts as an association table linking orders with products.

create table customers (
id BIGINT not null generated by default as identity,
name VARCHAR(255),
primary key (id)

)

create table orders (
id BIGINT not null generated by default as identity,

Example: Various Mappings

NHibernate 5.1 196

customer_id BIGINT,
date TIMESTAMP,
primary key (id)

)

create table line_items (
line_number INTEGER not null,
order_id BIGINT not null,
product_id BIGINT,
quantity INTEGER,
primary key (order_id, line_number)

)

create table products (
id BIGINT not null generated by default as identity,
serial_number VARCHAR(255),
primary key (id)

)

alter table orders
add constraint ordersFK0 foreign key (customer_id) references customers

alter table line_items
add constraint line_itemsFK0 foreign key (product_id) references products

alter table line_items
add constraint line_itemsFK1 foreign key (order_id) references orders

Example: Various Mappings

NHibernate 5.1 197

Chapter 25. Best Practices

Write fine-grained classes and map them using <component>.
Use an Address class to encapsulate street, suburb, state, postcode. This encourages code reuse and
simplifies refactoring.

Declare identifier properties on persistent classes.
NHibernate makes identifier properties optional. There are all sorts of reasons why you should use them.
We recommend that identifiers be 'synthetic' (generated, with no business meaning) and of a non-primitive
type. For maximum flexibility, use Int64 or String.

Place each class mapping in its own file.
Don't use a single monolithic mapping document. Map Eg.Foo in the file Eg/Foo.hbm.xml. This makes par-
ticularly good sense in a team environment.

Embed mappings in assemblies.
Place mapping files along with the classes they map and declare them as Embedded Resources in Visual
Studio.

Consider externalising query strings.
This is a good practice if your queries call non-ANSI-standard SQL functions. Externalising the query
strings to mapping files will make the application more portable.

Use parameters.
As in ADO.NET, always replace non-constant values by "?". Never use string manipulation to bind a non-
constant value in a query! Even better, consider using named parameters in queries.

Don't manage your own ADO.NET connections.
NHibernate lets the application manage ADO.NET connections. This approach should be considered a last-
resort. If you can't use the built-in connections providers, consider providing your own implementation of
NHibernate.Connection.IConnectionProvider.

Consider using a custom type.
Suppose you have a type, say from some library, that needs to be persisted but doesn't provide the accessors
needed to map it as a component. You should consider implementing NHibernate.UserTypes.IUserType.
This approach frees the application code from implementing transformations to / from an NHibernate type.

Use hand-coded ADO.NET in bottlenecks.
In performance-critical areas of the system, some kinds of operations (eg. mass update / delete) might bene-
fit from direct ADO.NET. But please, wait until you know something is a bottleneck. And don't assume that
direct ADO.NET is necessarily faster. If need to use direct ADO.NET, it might be worth opening a
NHibernate ISession and using that SQL connection. That way you can still use the same transaction
strategy and underlying connection provider.

Understand ISession flushing.
From time to time the ISession synchronizes its persistent state with the database. Performance will be af-
fected if this process occurs too often. You may sometimes minimize unnecessary flushing by disabling
automatic flushing or even by changing the order of queries and other operations within a particular trans-
action.

In a three tiered architecture, consider using SaveOrUpdate().
When using a distributed architecture, you could pass persistent objects loaded in the middle tier to and
from the user interface tier. Use a new session to service each request. Use ISession.Update() or ISes-

NHibernate 5.1 198

sion.SaveOrUpdate() to update the persistent state of an object.

In a two tiered architecture, consider using session disconnection.
Database Transactions have to be as short as possible for best scalability. However, it is often necessary to
implement long running Application Transactions, a single unit-of-work from the point of view of a user.
This Application Transaction might span several client requests and response cycles. Either use Detached
Objects or, in two tiered architectures, simply disconnect the NHibernate Session from the ADO.NET con-
nection and reconnect it for each subsequent request. Never use a single Session for more than one Applic-
ation Transaction use-case, otherwise, you will run into stale data.

Don't treat exceptions as recoverable.
This is more of a necessary practice than a "best" practice. When an exception occurs, roll back the
ITransaction and close the ISession. If you don't, NHibernate can't guarantee that in-memory state accur-
ately represents persistent state. As a special case of this, do not use ISession.Load() to determine if an
instance with the given identifier exists on the database; use Get() or a query instead.

Prefer lazy fetching for associations.
Use eager (outer-join) fetching sparingly. Use proxies and/or lazy collections for most associations to
classes that are not cached in the second-level cache. For associations to cached classes, where there is a
high probability of a cache hit, explicitly disable eager fetching using fetch="select". When an outer-join
fetch is appropriate to a particular use case, use a query with a left join fetch.

Consider abstracting your business logic from NHibernate.
Hide (NHibernate) data-access code behind an interface. Combine the DAO and Thread Local Session pat-
terns. You can even have some classes persisted by hand-coded ADO.NET, associated to NHibernate via
an IUserType. (This advice is intended for "sufficiently large" applications; it is not appropriate for an ap-
plication with five tables!)

Implement Equals() and GetHashCode() using a unique business key.
If you compare objects outside of the ISession scope, you have to implement Equals() and
GetHashCode(). Inside the ISession scope, object identity is guaranteed. If you implement these methods,
never ever use the database identifier! A transient object doesn't have an identifier value and NHibernate
would assign a value when the object is saved. If the object is in an ISet while being saved, the hash code
changes, breaking the contract. To implement Equals() and GetHashCode(), use a unique business key,
that is, compare a unique combination of class properties. Remember that this key has to be stable and
unique only while the object is in an ISet, not for the whole lifetime (not as stable as a database primary
key). Never use collections in the Equals() comparison (lazy loading) and be careful with other associated
classes that might be proxied.

Don't use exotic association mappings.
Good use-cases for a real many-to-many associations are rare. Most of the time you need additional inform-
ation stored in the "link table". In this case, it is much better to use two one-to-many associations to an in-
termediate link class. In fact, we think that most associations are one-to-many and many-to-one, you should
be careful when using any other association style and ask yourself if it is really necessary.

Best Practices

NHibernate 5.1 199

Part I. NHibernateContrib Documentation

Preface
The NHibernateContrib is various programs contributed to NHibernate by members of the NHibernate Team or
by the end users. The projects in here are not considered core pieces of NHibernate but they extend it in a use-
ful way.

NHibernate 5.1 cci

Chapter 26. NHibernate.Caches
What is NHibernate.Caches?

NHibernate.Caches namespace contains several second-level cache providers for NHibernate. A cache is
a place where entities are kept after being loaded from the database; once cached, they can be retrieved without
going to the database. This means that they are faster to (re)load.

An NHibernate session has an internal (first-level) cache where it keeps its entities. There is no sharing between
these caches - a first-level cache belongs to a given session and is destroyed with it. NHibernate provides a
second-level cache system; it works at the session factory level. A second-level cache is shared by all sessions
created by the same session factory.

An important point is that the second-level cache does not cache instances of the object type being cached; in-
stead it caches the individual values of the properties of that object. This provides two benefits. One, NHibern-
ate doesn't have to worry that your client code will manipulate the objects in a way that will disrupt the cache.
Two, the relationships and associations do not become stale, and are easy to keep up-to-date because they are
simply identifiers. The cache is not a tree of objects but rather a map of arrays.

With the session-per-request model, a high number of sessions can concurrently access the same entity without
hitting the database each time; hence the performance gain.

Depending on the chosen cache provider, the second level cache may be actually shared between different ses-
sion factories. If you need to avoid this for some session factories, configure each of them with a different
cache.region_prefix. See Section 3.5, “Optional configuration properties”.

Several cache providers have been contributed by NHibernate users:

NHibernate.Caches.Prevalence

Uses Bamboo.Prevalence as the cache provider. Open the file Bamboo.Prevalence.license.txt for more
information about its license; you can also visit its website [http://bbooprevalence.sourceforge.net/]. This
provider is available for the .Net Framework only. Also see Section 26.2, “Prevalence Cache Configura-
tion”.

NHibernate.Caches.SysCache

Uses System.Web.Caching.Cache as the cache provider. This means that you can rely on ASP.NET cach-
ing feature to understand how it works. For more information, read (on the MSDN): Caching Application
Data [https://msdn.microsoft.com/en-us/library/6hbbsfk6.aspx]. This provider is available for the .Net
Framework only. Also see Section 26.3, “SysCache Configuration”.

NHibernate.Caches.SysCache2

Similar to NHibernate.Caches.SysCache, uses ASP.NET cache. This provider also supports SQL depend-
ency-based expiration, meaning that it is possible to configure certain cache regions to automatically expire
when the relevant data in the database changes.

SysCache2 requires Microsoft SQL Server 2000 or higher. This provider is available for the .Net Frame-
work only.

See Section 26.4, “SysCache2 Configuration”.

NHibernate.Caches.EnyimMemcached

Uses Memcached. See memcached homepage [https://memcached.org/] for more information on Mem-
cached. This provider is available for the .Net Framework only. Also see Section 26.5, “EnyimMemcached

NHibernate 5.1 202

http://bbooprevalence.sourceforge.net/
https://msdn.microsoft.com/en-us/library/6hbbsfk6.aspx
https://msdn.microsoft.com/en-us/library/6hbbsfk6.aspx
https://memcached.org/

Configuration”.

NCache provider for NHibernate

Uses NCache. NCache is a commercial distributed caching system with a provider for NHibernate. The
NCache Express version is free for use, see NCache Express homepage
[http://www.alachisoft.com/ncache/] for more information.

NHibernate.Caches.RtMemoryCache

Uses System.Runtime.Caching.MemoryCache.Default as the cache provider. This provider is available for
the .Net Framework only. See Section 26.6, “RtMemoryCache Configuration”.

NHibernate.Caches.CoreMemoryCache

Uses Microsoft.Extensions.Caching.Memory.MemoryCache as the cache provider. This provider is avail-
able as a .Net Standard NuGet package. See Section 26.7, “CoreMemoryCache Configuration”.

NHibernate.Caches.CoreDistributedCache

Uses Microsoft.Extensions.Caching.Abstractions.IDistributedCache implementations as the cache
provider. The implementation has to be provided through an IDistributedCacheFactory. Distributed
cache factories for Memcached, Redis, SqlServer and Memory caches are available through their own pack-
age, prefixed by NHibernate.Caches.CoreDistributedCache..

This provider is available as a .Net Standard NuGet package. See Section 26.8, “CoreDistributedCache
Configuration”.

26.1. How to use a cache?

Here are the steps to follow to enable the second-level cache in NHibernate:

• Choose the cache provider you want to use and copy its assembly in your assemblies directory. (For ex-
ample, NHibernate.Caches.Prevalence.dll or NHibernate.Caches.SysCache.dll.)

• To tell NHibernate which cache provider to use, add in your NHibernate configuration file (can be YourAs-

sembly.exe.config or web.config or a .cfg.xml file):

<property name="cache.provider_class">XXX</property>(1)
<property name="cache.default_expiration">120</property>(2)
<property name="cache.use_sliding_expiration">true</property>(3)

(1) "XXX" is the assembly-qualified class name of a class implementing ICacheProvider, eg. "NHibern-
ate.Caches.SysCache.SysCacheProvider, NHibernate.Caches.SysCache".

(2) The expiration value is the number of seconds you wish to cache each entry (here two minutes). Not
all providers support this setting, it may be ignored. Check their respective documentation.

(3) The use_sliding_expiration value is whether you wish to use a sliding expiration or not. Defaults
to false. Not all providers support this setting, it may be ignored. Check their respective documenta-
tion.

• Add <cache usage="read-write|nonstrict-read-write|read-only"/> (just after <class>) in the map-
ping of the entities you want to cache. It also works for collections (bag, list, map, set, ...).

Be careful.

NHibernate.Caches

NHibernate 5.1 203

http://www.alachisoft.com/ncache/

• Most caches are never aware of changes made to the persistent store by another process (though they may
be configured to regularly expire cached data). As the caches are created at the session factory level, they
are destroyed with the SessionFactory instance; so you must keep them alive as long as you need them.

• The second level cache requires the use of transactions, be it through transaction scopes or NHibernate
transactions. Interacting with the data store without an explicit transaction is discouraged, and will not al-
low the second level cache to work as intended.

• To avoid issues with composite ids and some cache providers, ToString() needs to be overridden on com-
posite id classes. It should yield an unique string representing the id. If the composite id is mapped as a
component, overriding the component ToString() is enough. See Section 7.4, “Components as composite
identifiers”.

See also Section 20.2, “The Second Level Cache”.

26.2. Prevalence Cache Configuration

There is only one configurable parameter: prevalenceBase. This is the directory on the file system where the
Prevalence engine will save data. It can be relative to the current directory or a full path. If the directory doesn't
exist, it will be created.

The prevalenceBase setting can only be set programmatically through on the NHibernate configuration object,
by example with Configuration.SetProperty.

26.3. SysCache Configuration

SysCache relies on System.Web.Caching.Cache for the underlying implementation. The following NHibernate
configuration settings are available:

cache.default_expiration

Number of seconds to wait before expiring each item. Defaults to 300. It can also be set programmatically
on the NHibernate configuration object under the name expiration, which then takes precedence over
cache.default_expiration.

cache.use_sliding_expiration

Should the expiration be sliding? A sliding expiration is reinitialized at each get. Defaults to false.

priority

A numeric cost of expiring each item, where 1 is a low cost, 5 is the highest, and 3 is normal. Only values 1
through 6 are valid. 6 is a special value corresponding to NotRemovable. This setting can only be set pro-
grammatically through on the NHibernate configuration object, by example with Configura-

tion.SetProperty.

SysCache has a config file section handler to allow configuring different expirations and priorities for different
regions. Here is an example:

Example 26.1.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<configSections>

NHibernate.Caches

NHibernate 5.1 204

<section name="syscache"
type="NHibernate.Caches.SysCache.SysCacheSectionHandler,NHibernate.Caches.SysCache" />

</configSections>

<syscache>
<cache region="foo" expiration="500" priority="4" />
<cache region="bar" expiration="300" priority="3" sliding="true" />

</syscache>
</configuration>

26.4. SysCache2 Configuration

SysCache2 can use SqlCacheDependencies to invalidate cache regions when data in an underlying SQL Server
table or query changes. Query dependencies are only available for SQL Server 2005 or higher. To use the cache
provider, the application must be setup and configured to support SQL notifications as described in the MSDN
documentation.

The following NHibernate configuration settings are available:

cache.default_expiration

Number of seconds to wait before expiring each item. Defaults to 300. It can also be set programmatically
on the NHibernate configuration object under the name expiration, which then takes precedence over
cache.default_expiration.

cache.use_sliding_expiration

Should the expiration be sliding? A sliding expiration is reinitialized at each get. Defaults to false.

To configure cache regions with SqlCacheDependencies a syscache2 config section must be defined in the ap-
plication's configuration file. See the sample below.

Example 26.2.

<configSections>
<section name="syscache2"
type="NHibernate.Caches.SysCache2.SysCacheSection, NHibernate.Caches.SysCache2"/>

</configSections>

26.4.1. Table-based Dependency

A table-based dependency will monitor the data in a database table for changes. Table-based dependencies are
generally used for a SQL Server 2000 database but will work with SQL Server 2005 or superior as well. Before
you can use SQL Server cache invalidation with table based dependencies, you need to enable notifications for
the database. This task is performed with the aspnet_regsql command. With table-based notifications, the ap-
plication will poll the database for changes at a predefined interval. A cache region will not be invalidated im-
mediately when data in the table changes. The cache will be invalidated the next time the application polls the
database for changes.

To configure the data in a cache region to be invalidated when data in an underlying table is changed, a cache
region must be configured in the application's configuration file. See the sample below.

NHibernate.Caches

NHibernate 5.1 205

Example 26.3.

<syscache2>
<cacheRegion name="Product">
<dependencies>
<tables>

<add name="price"
databaseEntryName="Default"
tableName="VideoTitle" />

</tables>
</dependencies>

</cacheRegion>
</syscache2>

Table-based Dependency Configuration Properties

name

Unique name for the dependency

tableName

The name of the database table that the dependency is associated with. The table must be enabled for noti-
fication support with the AspNet_SqlCacheRegisterTableStoredProcedure.

databaseEntryName

The name of a database defined in the databases element for sqlCacheDependency for caching (ASP.NET
Settings Schema) element of the application's Web.config file.

26.4.2. Command-Based Dependencies

A command-based dependency will use a SQL command to identify records to monitor for data changes. Com-
mand-based dependencies work only with SQL Server 2005.

Before you can use SQL Server cache invalidation with command-based dependencies, you need to enable the
Service Broker for query notifications. The application must also start the listener for receiving change notifica-
tions from SQL Server. With command based notifications, SQL Server will notify the application when the
data of a record returned in the results of a SQL query has changed. Note that a change will be indicated if the
data in any of the columns of a record change, not just the columns returned by a query. The query is a way to
limit the number of records monitored for changes, not the columns. As soon as data in one of the records is
modified, the data in the cache region will be invalidated immediately.

To configure the data in a cache region to be invalidated based on a SQL command, a cache region must be
configured in the application's configuration file. See the samples below.

Example 26.4. Stored Procedure

<cacheRegion name="Product" priority="High" >
<dependencies>
<commands>
<add name="price"

command="ActiveProductsStoredProcedure"
isStoredProcedure="true"/>

</commands>
</dependencies>

</cacheRegion>

NHibernate.Caches

NHibernate 5.1 206

Example 26.5. SELECT Statement

<cacheRegion name="Product" priority="High">
<dependencies>
<commands>
<add name="price"

command="Select VideoTitleId from dbo.VideoTitle where Active = 1"
connectionName="default"
connectionStringProviderType="NHibernate.Caches.SysCache2.ConfigConnectionStringProvider, NHibernate.Caches.SysCache2"/>

</commands>
</dependencies>

</cacheRegion>

Command Configuration Properties

name

Unique name for the dependency

command (required)
SQL command that returns results which should be monitored for data changes

isStoredProcedure (optional)
Indicates if command is a stored procedure. The default is false.

connectionName (optional)
The name of the connection in the applications configuration file to use for registering the cache depend-
ency for change notifications. If no value is supplied for connectionName or connectionStringProvider-
Type, the connection properties from the NHibernate configuration will be used.

connectionStringProviderType (optional)
IConnectionStringProvider to use for retrieving the connection string to use for registering the cache de-
pendency for change notifications. If no value is supplied for connectionName, the unnamed connection
supplied by the provider will be used.

26.4.3. Aggregate Dependencies

Multiple cache dependencies can be specified. If any of the dependencies triggers a change notification, the
data in the cache region will be invalidated. See the samples below.

Example 26.6. Multiple commands

<cacheRegion name="Product">
<dependencies>
<commands>
<add name="price"

command="ActiveProductsStoredProcedure"
isStoredProcedure="true"/>

<add name="quantity"
command="Select quantityAvailable from dbo.VideoAvailability"/>

</commands>
</dependencies>

</cacheRegion>

NHibernate.Caches

NHibernate 5.1 207

Example 26.7. Mixed

<cacheRegion name="Product">
<dependencies>
<commands>
<add name="price"

command="ActiveProductsStoredProcedure"
isStoredProcedure="true"/>

</commands>
<tables>
<add name="quantity"

databaseEntryName="Default"
tableName=" VideoAvailability" />

</tables>
</dependencies>

</cacheRegion>

26.4.4. Additional Settings

In addition to data dependencies for the cache regions, time based expiration policies can be specified for each
item added to the cache. Time based expiration policies will not invalidate the data dependencies for the whole
cache region, but serve as a way to remove items from the cache after they have been in the cache for a spe-
cified amount of time. See the samples below.

Example 26.8. Relative Expiration

<cacheRegion name="Product" relativeExpiration="300" priority="High" useSlidingExpiration="true" />

Example 26.9. Time of Day Expiration

<cacheRegion name="Product" timeOfDayExpiration="2:00:00" priority="High" />

Additional Configuration Properties

relativeExpiration

Number of seconds that an individual item will exist in the cache before being removed. Defaults to 300 if
neither relativeExpiration nor timeOfDayExpiration are defined, and if no expiration settings are
defined in NHibernate configuration.

useSlidingExpiration

Should the expiration be sliding? A sliding expiration is reinitialized at each get. Defaults to false if not
defined in NHibernate configuration.

timeOfDayExpiration

24 hour based time of day that an item will exist in the cache until. 12am is specified as 00:00:00; 10pm is
specified as 22:00:00. Only valid if relativeExpiration is not specified. Time of Day Expiration is useful for
scenarios where items should be expired from the cache after a daily process completes.

priority

NHibernate.Caches

NHibernate 5.1 208

System.Web.Caching.CacheItemPriority that identifies the relative priority of items stored in the cache.

26.5. EnyimMemcached Configuration

Its configuration relies on the EnyimMemcached library own configuration, through its enyim.com/memcached

configuration section. See project site [https://github.com/enyim/EnyimMemcached].

26.6. RtMemoryCache Configuration

RtMemoryCache relies on System.Runtime.Caching.MemoryCache for the underlying implementation. The
following NHibernate configuration settings are available:

cache.default_expiration

Number of seconds to wait before expiring each item. Defaults to 300. It can also be set programmatically
on the NHibernate configuration object under the name expiration, which then takes precedence over
cache.default_expiration.

cache.use_sliding_expiration

Should the expiration be sliding? A sliding expiration is reinitialized at each get. Defaults to false.

RtMemoryCache has a config file section handler to allow configuring different expirations for different re-
gions. Here is an example:

Example 26.10.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<configSections>
<section name="rtmemorycache"
type="NHibernate.Caches.RtMemoryCache.RtMemoryCacheSectionHandler,NHibernate.Caches.RtMemoryCache" />

</configSections>

<rtmemorycache>
<cache region="foo" expiration="500" />
<cache region="bar" expiration="300" sliding="true" />

</rtmemorycache>
</configuration>

26.7. CoreMemoryCache Configuration

CoreMemoryCache relies on Microsoft.Extensions.Caching.Memory.MemoryCache for the underlying imple-
mentation. The following NHibernate configuration settings are available:

cache.default_expiration

Number of seconds to wait before expiring each item. Defaults to 300. It can also be set programmatically
on the NHibernate configuration object under the name expiration, which then takes precedence over
cache.default_expiration.

cache.use_sliding_expiration

Should the expiration be sliding? A sliding expiration is reinitialized at each get. Defaults to false.

NHibernate.Caches

NHibernate 5.1 209

https://github.com/enyim/EnyimMemcached

CoreMemoryCache has a config file section handler to allow configuring different expirations for different re-
gions, and configuring the MemoryCache expiration scan frequency. Here is an example:

Example 26.11.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<configSections>
<section name="corememorycache"
type="NHibernate.Caches.CoreMemoryCache.CoreMemoryCacheSectionHandler,NHibernate.Caches.CoreMemoryCache"

/>
</configSections>

<corememorycache expiration-scan-frequency="00:05:00">
<cache region="foo" expiration="500" />
<cache region="bar" expiration="300" sliding="true" />

</corememorycache>
</configuration>

26.8. CoreDistributedCache Configuration

CoreDistributedCache relies on Microsoft.Extensions.Caching.Abstractions.IDistributedCache imple-
mentations. The implementation has to be provided through an IDistributedCacheFactory, either supplied
through configuration or programmatically by affecting CoreDistributedCacheProvider.CacheFactory be-
fore building a session factory. The following NHibernate configuration settings are available:

cache.default_expiration

Number of seconds to wait before expiring each item. Defaults to 300. It can also be set programmatically
on the NHibernate configuration object under the name expiration, which then takes precedence over
cache.default_expiration.

cache.use_sliding_expiration

Should the expiration be sliding? A sliding expiration is reinitialized at each get. Defaults to false.

CoreDistributedCache has a config file section handler to allow configuring different expirations for different
regions, configuring the IDistributedCacheFactory to use, and configuring additional properties specific to
the chosen IDistributedCache implementation. Here is an example:

Example 26.12.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<configSections>
<section name="coredistributedcache"
type="NHibernate.Caches.CoreDistributedCache.CoreDistributedCacheSectionHandler,

NHibernate.Caches.CoreDistributedCache" />
</configSections>

<coredistributedcache
factory-class="NHibernate.Caches.CoreDistributedCache.Memory.MemoryFactory,

NHibernate.Caches.CoreDistributedCache.Memory">
<properties>
<property name="expiration-scan-frequency">00:10:00</property>
<property name="size-limit">1048576</property>

</properties>
<cache region="foo" expiration="500" sliding="true" />

NHibernate.Caches

NHibernate 5.1 210

<cache region="noExplicitExpiration" sliding="true" />
</coredistributedcache>

</configuration>

CoreDistributedCache does not support NHibernate.Cache.ICache.Clear. Clearing the NHibernate cache has
no effects with CoreDistributedCache.

26.8.1. Memcached distributed cache factory

NHibernate.Caches.CoreDistributedCache.Memcached provides a Redis distributed cache factory. This fact-
ory yields a Enyim.Caching.MemcachedClient from EnyimMemcachedCore. For using it, reference the cache
factory package and set the factory-class attribute of the coredistributedcache configuration section to
NHibernate.Caches.CoreDistributedCache.Memcached.MemcachedFactory, NHibern-

ate.Caches.CoreDistributedCache.Memcached.

Memcached does not support sliding expirations. cache.use_sliding_expiration setting or sliding region
setting do not have any effect with Memcached.

The following additional properties can be configured:

configuration

The JSON configuration of EnyimMemcachedCore, see its project website
[https://github.com/cnblogs/EnyimMemcachedCore]. It has to be structured like the value part of the "en-

yimMemcached" property in an appsettings.json file.

Example 26.13.

{
"Servers": [
{
"Address": "localhost",
"Port": 11211

}
]

}

26.8.2. Redis distributed cache factory

NHibernate.Caches.CoreDistributedCache.Redis provides a Redis distributed cache factory. This factory
yields a Microsoft.Extensions.Caching.Redis.RedisCache. For using it, reference the cache factory pack-
age and set the factory-class attribute of the coredistributedcache configuration section to NHibern-

ate.Caches.CoreDistributedCache.Redis.RedisFactory, NHibern-

ate.Caches.CoreDistributedCache.Redis.

The following additional properties can be configured:

configuration

Its value will be used to set the Configuration property of the RedisCache options (RedisCacheOptions).

instance-name

Its value will be used to set the InstanceName property of the RedisCache options (RedisCacheOptions).

NHibernate.Caches

NHibernate 5.1 211

https://github.com/cnblogs/EnyimMemcachedCore

26.8.3. SQL Server distributed cache factory

NHibernate.Caches.CoreDistributedCache.SqlServer provides a SQL Server distributed cache factory.
This factory yields a Microsoft.Extensions.Caching.SqlServer.SqlServerCache. For using it, reference the
cache factory package and set the factory-class attribute of the coredistributedcache configuration section
to NHibernate.Caches.CoreDistributedCache.SqlServer.SqlServerFactory, NHibern-

ate.Caches.CoreDistributedCache.SqlServer.

The following additional properties can be configured:

connection-string

Its value will be used to set the ConnectionString property of the SqlServerCache options (SqlServer-
CacheOptions).

schema-name

Its value will be used to set the SchemaName property of the SqlServerCache options (SqlServer-
CacheOptions).

table-name

Its value will be used to set the TableName property of the SqlServerCache options (SqlServer-
CacheOptions).

expired-items-deletion-interval

Its value will be used to set the ExpiredItemsDeletionInterval property of the SqlServerCache options
(SqlServerCacheOptions). It can be provided either as an integer being a number of minutes or as a
TimeSpan string representation.

26.8.4. Memory distributed cache factory

NHibernate.Caches.CoreDistributedCache.Memory provides a memory "distributed" cache factory. This
factory yields a Microsoft.Extensions.Caching.Memory.MemoryDistributedCache. For using it, reference
the cache factory package and set the factory-class attribute of the coredistributedcache configuration
section to NHibernate.Caches.CoreDistributedCache.Memory.MemoryFactory, NHibern-

ate.Caches.CoreDistributedCache.Memory.

As implied by its name, this cache is not actually distributed. It is meant for testing purpose. For other usages,
consider using another memory cache provider, like CoreMemoryCache. Due to the distributed cache implement-
ation, using the MemoryDistributedCache has some drawbacks compared to most other memory cache pro-
viders: it will serialize cached objects, incurring some overhead; it does not support clearing the cache. But due
to the serialization of cached objects, it is able of computing its consumed memory size, thus the availability of
the SizeLimit option.

The following additional properties can be configured:

expiration-scan-frequency

Its value will be used to set the ExpirationScanFrequency property of the MemoryDistributedCache op-
tions (MemoryDistributedCacheOptions). It can be provided either as an integer being a number of
minutes or as a TimeSpan string representation.

size-limit

Its value will be used to set the SizeLimit property of the MemoryDistributedCache options (MemoryDis-
tributedCacheOptions). Its value is an integer, representing the maximal bytes count to be stored in the

NHibernate.Caches

NHibernate 5.1 212

cache.

NHibernate.Caches

NHibernate 5.1 213

Chapter 27. NHibernate.Mapping.Attributes
What is NHibernate.Mapping.Attributes?

NHibernate.Mapping.Attributes is an add-in for NHibernate [http://nhibernate.info/] contributed by
Pierre Henri Kuaté (aka KPixel); the former implementation was made by John Morris. NHibernate re-
quire mapping streams to bind your domain model to your database. Usually, they are written (and maintained)
in separated hbm.xml files.

With NHibernate.Mapping.Attributes, you can use .NET attributes to decorate your entities and these attributes
will be used to generate these mapping .hbm.xml (as files or streams). So you will no longer have to bother
with these nasty xml files ;).

Content of this library.

1. NHibernate.Mapping.Attributes: That the only project you need (as end-user)

2. Test: a working sample using attributes and HbmSerializer as NUnit TestFixture

3. Generator: The program used to generate attributes and HbmWriter

4. Refly [http://mbunit.tigris.org/]: Thanks to Jonathan de Halleux [http://www.dotnetwiki.org/] for this lib-
rary which make it so easy to generate code

Important

This library is generated using the file /

src/NHibernate.Mapping.Attributes/nhibernate-mapping.xsd (which is embedded in the as-
sembly to be able to validate generated XML streams). As this file can change at each new release of
NHibernate, you should regenerate it before using it with a different version (open the Generator solu-
tion, compile and run the Generator project). But, no test has been done with versions prior to 0.8.

27.1. What's new?

NHibernate. introduces many new features, improvements and changes:

1. It is possible to import classes by simply decorating them with [Import] class ImportedClass1 {}.
Note that you must use HbmSerializer.Serialize(assembly); The <import/> mapping will be added
before the classes mapping. If you prefer to keep these imports in the class using them, you can specify
them all on the class: [Import(ClassType=typeof(ImportedClass1))] class Query {}.

2. [RawXmlAttribute] is a new attribute allowing to insert xml as-is in the mapping. This feature can be very
useful to do complex mapping (eg: components). It may also be used to quickly move the mapping from
xml files to attributes. Usage: [RawXml(After=typeof(ComponentAttribute), Content="<component

name="...">...</component>")]. After tells after which kind of mapping the xml should be inserted
(generally, it is the type of the mapping you are inserting); it is optional (in which case the xml is inserted
on the top of the mapping). Note: At the moment, all raw xmls are prefixed by a <!----> (in the generated
stream); this is a known side-effect.

3. [AttributeIdentifierAttribute] is a new attribute allowing to provide the value of a defined "place

NHibernate 5.1 214

http://nhibernate.info/
http://mbunit.tigris.org/
http://www.dotnetwiki.org/

holder". Eg:

public class Base {
[Id(..., Column="{{Id.Column}}")]
[AttributeIdentifier(Name="Id.Column", Value="ID")] // Default value
public int Id { ... }

}
[AttributeIdentifier(Name="Id.Column", Value="SUB_ID")]
[Class] public class MappedSubClass : Base { }

The idea is that, when you have a mapping which is shared by many subclasses but which has minor dif-
ferences (like different column names), you can put the mapping in the base class with place holders on
these fields and give their values in subclasses. Note that this is possible for any mapping field taking a
string (column, name, type, access, etc.). And, instead of Value, you can use ValueType or ValueObject
(if you use an enum, you can control its formatting with ValueObject).

The "place holder" is defined like this: {{XXX}}. If you don't want to use these double curly brackets, you
can change them using the properties StartQuote and EndQuote of the class HbmWriter.

4. It is possible to register patterns (using Regular Expressions) to automatically transform fully qualified
names of properties types into something else. Eg: HbmSerial-

izer.Default.HbmWriter.Patterns.Add(@"Namespace.(\S+), Assembly", "$1"); will map all proper-
ties with a not-qualified type name.

5. Two methods have been added to allow writing: cfg.AddInputStream(HbmSerial-

izer.Default.Serialize(typeof(XXX))) and cfg.AddInputStream(HbmSerial-

izer.Default.Serialize(typeof(XXX).Assembly)). So it is no longer required to create a MemoryS-
tream for these simple cases.

6. Two WriteUserDefinedContent() methods have been added to HbmWriter. They improve the extensibil-
ity of this library; it is now very easy to create a .NET attribute and integrate it in the mapping.

7. Attributes [(Jcs)Cache], [Discriminator] and [Key] can be specified at class-level.

8. Interfaces can be mapped (just like classes and structs).

9. A notable "bug" fix is the re-ordering of (joined-)subclasses; This operation may be required when a sub-
class extends another subclass. In this case, the extended class mapping must come before the extending
class mapping. Note that the re-ordering takes place only for "top-level" classes (that is not nested in other
mapped classes). Anyway, it is quite unusual to put a interdependent mapped subclasses in a mapped
class.

10. There are also many other little changes; refer to the release notes for more details.

27.2. How to use it?

The end-user class is NHibernate.Mapping.Attributes.HbmSerializer. This class serialize your domain
model to mapping streams. You can either serialize classes one by one or an assembly. Look at NHibern-

ate.Mapping.Attributes.Test project for a working sample.

The first step is to decorate your entities with attributes; you can use: [Class], [Subclass], [JoinedSubclass]
or [Component]. Then, you decorate your members (fields/properties); they can take as many attributes as re-
quired by your mapping. Eg:

NHibernate.Mapping.Attributes

NHibernate 5.1 215

[NHibernate.Mapping.Attributes.Class]
public class Example
{

[NHibernate.Mapping.Attributes.Property]
public string Name;

}

After this step, you use NHibernate.Mapping.Attributes.HbmSerializer: (here, we use Default which is an
instance you can use if you don't need/want to create it yourself).

NHibernate.Cfg.Configuration cfg = new NHibernate.Cfg.Configuration();
cfg.Configure();
// Enable validation (optional)
NHibernate.Mapping.Attributes.HbmSerializer.Default.Validate = true;
// Here, we serialize all decorated classes (but you can also do it class by class)
cfg.AddInputStream(NHibernate.Mapping.Attributes.HbmSerializer.Default.Serialize(

System.Reflection.Assembly.GetExecutingAssembly()););
// Now you can use this configuration to build your SessionFactory...

Note

As you can see here: NHibernate.Mapping.Attributes is not (really) intrusive. Setting attributes on your
objects doesn't force you to use them with NHibernate and doesn't break any constraint on your archi-
tecture. Attributes are purely informative (like documentation)!

27.3. Tips

1. In production, it is recommended to generate a XML mapping file from NHibernate.Mapping.Attributes
and use this file each time the SessionFactory need to be built. Use: HbmSerial-

izer.Default.Serialize(typeof(XXX).Assembly, "DomainModel.hbm.xml"); It is slightly faster.

2. Use HbmSerializer.Validate to enable/disable the validation of generated xml streams (against
NHibernate mapping schema); this is useful to quickly find errors (they are written in StringBuilder Hbm-
Serializer.Error). If the error is due to this library then see if it is a know issue and report it; you can
contribute a solution if you solve the problem :)

3. Your classes, fields and properties (members) can be private; just make sure that you have the permission
to access private members using reflection (ReflectionPermissionFlag.MemberAccess).

4. Members of a mapped classes are also seek in its base classes (until we reach mapped base class). So you
can decorate some members of a (not mapped) base class and use it in its (mapped) sub class(es).

5. For a Name taking a System.Type, set the type with Name="xxx" (as string) or NameType=typeof(xxx);
(add "Type" to "Name")

6. By default, .NET attributes don't keep the order of attributes; so you need to set it yourself when the order
matter (using the first parameter of each attribute); it is highly recommended to set it when you have more
than one attribute on the same member.

7. As long as there is no ambiguity, you can decorate a member with many unrelated attributes. A good ex-
ample is to put class-related attributes (like <discriminator>) on the identifier member. But don't forget
that the order matters (the <discriminator> must be after the <id>). The order used comes from the order
of elements in the NHibernate mapping schema. Personally, I prefer using negative numbers for these at-
tributes (if they come before!).

NHibernate.Mapping.Attributes

NHibernate 5.1 216

8. You can add [HibernateMapping] on your classes to specify <hibernate-mapping> attributes (used when
serializing the class in its stream). You can also use HbmSerializer.Hbm* properties (used when serializ-
ing an assembly or a type that is not decorated with [HibernateMapping]).

9. Instead of using a string for DiscriminatorValue (in [Class] and [Subclass]), you can use any object
you want. Example:

[Subclass(DiscriminatorValueEnumFormat="d", DiscriminatorValueObject=DiscEnum.Val1)]

Here, the object is an Enum, and you can set the format you want (the default value is "g"). Note that you
must put it before! For others types, It simply use the ToString() method of the object.

10. Each stream generated by NHibernate.Mapping.Attributes can contain a comment with the date of the gen-
eration; You may enable/disable this by using the property HbmSerializer.WriteDateComment.

11. If you forget to provide a required xml attribute, it will obviously throw an exception while generating the
mapping.

12. The recommended and easiest way to map [Component] is to use [ComponentProperty]. The first step is
to put [Component] on the component class and map its fields/properties. Note that you shouldn't set the
Name in [Component]. Then, on each member in your classes, add [ComponentProperty]. But you can't
override Access, Update or Insert for each member.

There is a working example in NHibernate.Mapping.Attributes.Test (look for the class CompAddress and
its usage in others classes).

13. Another way to map [Component] is to use the way this library works: If a mapped class contains a
mapped component, then this component will be include in the class. NHibernate.Mapping.Attributes.Test
contains the classes JoinedBaz and Stuff which both use the component Address.

Basically, it is done by adding

[Component(Name = "MyComp")] private class SubComp : Comp {}

in each class. One of the advantages is that you can override Access, Update or Insert for each member.
But you have to add the component subclass in each class (and it can not be inherited). Another advantage
is that you can use [AttributeIdentifier].

14. Finally, whenever you think that it is easier to write the mapping in XML (this is often the case for
[Component]), you can use [RawXml].

15. About customization. HbmSerializer uses HbmWriter to serialize each kind of attributes. Their methods
are virtual; so you can create a subclass and override any method you want (to change its default behavi-
or).

Use the property HbmSerializer.HbmWriter to change the writer used (you may set a subclass of Hbm-

Writer).

Example using some this tips: (0, 1 and 2 are position indexes)

// Don't put it after [ManyToOne] !!!
[NHibernate.Mapping.Attributes.Id(0, TypeType=typeof(int))]

[NHibernate.Mapping.Attributes.Generator(1, Class="uuid.hex")]
[NHibernate.Mapping.Attributes.ManyToOne(2,

ClassType=typeof(Foo), OuterJoin=OuterJoinStrategy.True)]
private Foo Entity;

Generates:

NHibernate.Mapping.Attributes

NHibernate 5.1 217

<id type="Int32">
<generator class="uuid.hex" />

</id>
<many-to-one name="Entity" class="Namespaces.Foo, SampleAssembly" outer-join="true" />

27.4. Known issues and TODOs

First, read TODOs in the source code ;)

A Position property has been added to all attributes to order them. But there is still a problem:

When a parent element "p" has a child element "x" that is also the child element of another child element "c" of
"p" (preceding "x") :D Illustration:

<p>
<c>

<x />
</c>
<x />

</p>

In this case, when writing:

[Attributes.P(0)]
[Attributes.C(1)]

[Attributes.X(2)]
[Attributes.X(3)]

public MyType MyProperty;

X(3) will always belong to C(1) ! (as X(2)).

It is the case for <dynamic-component> and <nested-composite-element>.

Another bad news is that, currently, XML elements coming after this elements can not be included in them. Eg:
There is no way put a collection in <dynamic-component>. The reason is that the file nhibernate-mapping.xsd

tells how elements are built and in which order, and NHibernate.Mapping.Attributes use this order.

Anyway, the solution would be to add a int ParentNode property to BaseAttribute so that you can create a real
graph...

For now, you can fallback on [RawXml].

Actually, there is no other know issue nor planned modification. This library should be stable and complete; but
if you find a bug or think of an useful improvement, contact us!

On side note, it would be nice to write a better TestFixture than NHibernate.Mapping.Attributes.Test :D

27.5. Developer Notes

Any change to the schema (nhibernate-mapping.xsd) implies:

1. Checking if there is any change to do in the Generator (like updating KnowEnums / AllowMultipleValue /
IsRoot / IsSystemType / IsSystemEnum / CanContainItself)

NHibernate.Mapping.Attributes

NHibernate 5.1 218

2. Updating /src/NHibernate.Mapping.Attributes/nhibernate-mapping.xsd (copy/paste) and running
the Generator again (even if it wasn't modified)

3. Running the Test project and make sure that no exception is thrown. A class/property should be modified/ad-
ded in this project to be sure that any new breaking change will be caught (=> update the reference
hbm.xml files and/or the project NHibernate.Mapping.Attributes.csproj)

This implementation is based on NHibernate mapping schema; so there is probably lot of "standard schema fea-
tures" that are not supported...

The version of NHibernate.Mapping.Attributes should be the version of the NHibernate schema used to gener-
ate it (=> the version of NHibernate library).

In the design of this project, performance is a (very) minor goal :) Easier implementation and maintenance are
far more important because you can (and should) avoid to use this library in production (Cf. the first tip in Sec-
tion 27.3, “Tips”).

NHibernate.Mapping.Attributes

NHibernate 5.1 219

	NHibernate - Relational Persistence for Idiomatic .NET
	Table of Contents
	Preface
	Chapter 1. Quick-start with IIS and Microsoft SQL Server
	1.1. Getting started with NHibernate
	1.2. First persistent class
	1.3. Mapping the cat
	1.4. Playing with cats
	1.5. Finally

	Chapter 2. Architecture
	2.1. Overview
	2.2. Instance states
	2.3. Contextual Sessions

	Chapter 3. ISessionFactory Configuration
	3.1. Programmatic Configuration
	3.2. Obtaining an ISessionFactory
	3.3. User provided ADO.NET connection
	3.4. NHibernate provided ADO.NET connection
	3.5. Optional configuration properties
	3.5.1. SQL Dialects
	3.5.2. Outer Join Fetching
	3.5.3. Custom ICacheProvider
	3.5.4. Query Language Substitution

	3.6. Logging
	3.7. Implementing an INamingStrategy
	3.8. XML Configuration File

	Chapter 4. Persistent Classes
	4.1. A simple POCO example
	4.1.1. Declare properties for persistent fields
	4.1.2. Implement a default constructor
	4.1.3. Provide an identifier property (optional)
	4.1.4. Prefer non-sealed classes and virtual methods (optional)

	4.2. Implementing inheritance
	4.3. Implementing Equals() and GetHashCode()
	4.4. Dynamic models
	4.5. Tuplizers
	4.6. Lifecycle Callbacks
	4.7. IValidatable callback

	Chapter 5. Basic O/R Mapping
	5.1. Mapping declaration
	5.1.1. XML Namespace
	5.1.2. hibernate-mapping
	5.1.3. class
	5.1.4. subselect
	5.1.5. id
	5.1.5.1. generator
	5.1.5.2. Hi/Lo Algorithm
	5.1.5.3. UUID Hex Algorithm
	5.1.5.4. UUID String Algorithm
	5.1.5.5. GUID Algorithms
	5.1.5.6. Identity columns and Sequences
	5.1.5.7. Assigned Identifiers
	5.1.5.8. Enhanced identifier generators
	5.1.5.8.1. Identifier generator optimization

	5.1.6. composite-id
	5.1.7. discriminator
	5.1.8. version (optional)
	5.1.9. timestamp (optional)
	5.1.10. property
	5.1.11. many-to-one
	5.1.12. one-to-one
	5.1.13. natural-id
	5.1.14. component, dynamic-component
	5.1.15. properties
	5.1.16. subclass
	5.1.17. joined-subclass
	5.1.18. union-subclass
	5.1.19. join
	5.1.20. map, set, list, bag
	5.1.21. import

	5.2. NHibernate Types
	5.2.1. Entities and values
	5.2.2. Basic value types
	5.2.3. Custom value types
	5.2.4. Any type mappings

	5.3. SQL quoted identifiers
	5.4. Modular mapping files
	5.5. Generated Properties
	5.6. Auxiliary Database Objects

	Chapter 6. Collection Mapping
	6.1. Persistent Collections
	6.2. Mapping a Collection
	6.3. Collections of Values and Many-To-Many Associations
	6.4. One-To-Many Associations
	6.5. Lazy Initialization
	6.6. Sorted Collections
	6.7. Using an <idbag>
	6.8. Bidirectional Associations
	6.9. Bidirectional associations with indexed collections
	6.10. Ternary Associations
	6.11. Heterogeneous Associations
	6.12. Collection examples

	Chapter 7. Component Mapping
	7.1. Dependent objects
	7.2. Collections of dependent objects
	7.3. Components as IDictionary indices
	7.4. Components as composite identifiers
	7.5. Dynamic components

	Chapter 8. Inheritance Mapping
	8.1. The Three Strategies
	8.1.1. Table per class hierarchy
	8.1.2. Table per subclass
	8.1.3. Table per subclass, using a discriminator
	8.1.4. Mixing table per class hierarchy with table per subclass
	8.1.5. Table per concrete class
	8.1.6. Table per concrete class, using implicit polymorphism
	8.1.7. Mixing implicit polymorphism with other inheritance mappings

	8.2. Limitations

	Chapter 9. Manipulating Persistent Data
	9.1. Creating a persistent object
	9.2. Loading an object
	9.3. Querying
	9.3.1. Scalar queries
	9.3.2. The IQuery interface
	9.3.3. Filtering collections
	9.3.4. Criteria queries
	9.3.5. Queries in native SQL

	9.4. Updating objects
	9.4.1. Updating in the same ISession
	9.4.2. Updating detached objects
	9.4.3. Reattaching detached objects

	9.5. Deleting persistent objects
	9.6. Flush
	9.7. Checking dirtiness
	9.8. Ending a Session
	9.8.1. Flushing the Session
	9.8.2. Committing the database transaction
	9.8.3. Closing the ISession

	9.9. Exception handling
	9.10. Lifecycles and object graphs
	9.11. Interceptors
	9.12. Metadata API

	Chapter 10. Read-only entities
	10.1. Making persistent entities read-only
	10.1.1. Entities of immutable classes
	10.1.2. Loading persistent entities as read-only
	10.1.3. Loading read-only entities from an HQL query/criteria
	10.1.4. Making a persistent entity read-only

	10.2. Read-only affect on property type
	10.2.1. Simple properties
	10.2.2. Unidirectional associations
	10.2.2.1. Unidirectional one-to-one and many-to-one
	10.2.2.2. Unidirectional one-to-many and many-to-many

	10.2.3. Bidirectional associations
	10.2.3.1. Bidirectional one-to-one
	10.2.3.2. Bidirectional one-to-many/many-to-one
	10.2.3.3. Bidirectional many-to-many

	Chapter 11. Transactions And Concurrency
	11.1. Configurations, Sessions and Factories
	11.2. Threads and connections
	11.3. Considering object identity
	11.4. Optimistic concurrency control
	11.4.1. Long session with automatic versioning
	11.4.2. Many sessions with automatic versioning
	11.4.3. Customizing automatic versioning
	11.4.4. Application version checking

	11.5. Session disconnection
	11.6. Pessimistic Locking
	11.7. Connection Release Modes
	11.8. Transaction scopes (System.Transactions)

	Chapter 12. Interceptors and events
	12.1. Interceptors
	12.2. Event system

	Chapter 13. Batch processing
	13.1. Batch inserts
	13.2. The StatelessSession interface
	13.3. DML-style operations

	Chapter 14. HQL: The Hibernate Query Language
	14.1. Case Sensitivity
	14.2. The from clause
	14.3. Associations and joins
	14.4. The select clause
	14.5. Aggregate functions
	14.6. Polymorphic queries
	14.7. The where clause
	14.8. Expressions
	14.9. The order by clause
	14.10. The group by clause
	14.11. Sub-queries
	14.12. HQL examples
	14.13. Tips & Tricks

	Chapter 15. Criteria Queries
	15.1. Creating an ICriteria instance
	15.2. Narrowing the result set
	15.3. Ordering the results
	15.4. Associations
	15.5. Join entities without association (Entity joins or ad hoc joins)
	15.6. Dynamic association fetching
	15.7. Example queries
	15.8. Projections, aggregation and grouping
	15.9. Detached queries and sub-queries

	Chapter 16. QueryOver Queries
	16.1. Structure of a Query
	16.2. Simple Expressions
	16.3. Additional Restrictions
	16.4. Associations
	16.5. Join entities without association (Entity joins or ad hoc joins)
	16.6. Aliases
	16.7. Projections
	16.8. Projection Functions
	16.9. Entities Projection
	16.10. Sub-queries

	Chapter 17. Linq Queries
	17.1. Structure of a Query
	17.2. Parameter types
	17.3. Supported methods and members
	17.3.1. Common methods
	17.3.2. DateTime and DateTimeOffset
	17.3.3. ICollection, non generic and generic
	17.3.4. IDictionary, non generic and generic
	17.3.5. Mathematical functions
	17.3.6. Nullables
	17.3.7. Strings

	17.4. Future results
	17.5. Fetching associations
	17.6. Modifying entities inside the database
	17.6.1. Inserting new entities
	17.6.2. Updating entities
	17.6.3. Deleting entities

	17.7. Query cache
	17.8. Extending the Linq to NHibernate provider
	17.8.1. Adding SQL functions
	17.8.2. Adding a custom generator

	Chapter 18. Native SQL
	18.1. Using an ISQLQuery
	18.1.1. Scalar queries
	18.1.2. Entity queries
	18.1.3. Handling associations and collections
	18.1.4. Returning multiple entities
	18.1.4.1. Alias and property references

	18.1.5. Returning non-managed entities
	18.1.6. Handling inheritance
	18.1.7. Parameters

	18.2. Named SQL queries
	18.2.1. Using return-property to explicitly specify column/alias names
	18.2.2. Using stored procedures for querying
	18.2.2.1. Rules/limitations for using stored procedures

	18.3. Custom SQL for create, update and delete
	18.4. Custom SQL for loading

	Chapter 19. Filtering data
	19.1. NHibernate filters

	Chapter 20. Improving performance
	20.1. Fetching strategies
	20.1.1. Working with lazy associations
	20.1.2. Tuning fetch strategies
	20.1.3. Single-ended association proxies
	20.1.4. Initializing collections and proxies
	20.1.5. Using batch fetching
	20.1.6. Using subselect fetching

	20.2. The Second Level Cache
	20.2.1. Cache mappings
	20.2.2. Strategy: read only
	20.2.3. Strategy: read/write
	20.2.4. Strategy: nonstrict read/write

	20.3. Managing the caches
	20.4. The Query Cache
	20.5. Understanding Collection performance
	20.5.1. Taxonomy
	20.5.2. Lists, maps, idbags and sets are the most efficient collections to update
	20.5.3. Bags and lists are the most efficient inverse collections
	20.5.4. One shot delete

	20.6. Batch updates
	20.7. Multi Query
	20.8. Multi Criteria

	Chapter 21. Toolset Guide
	21.1. Schema Generation
	21.1.1. Customizing the schema
	21.1.2. Running the tool

	Chapter 22. Example: Parent/Child
	22.1. A note about collections
	22.2. Bidirectional one-to-many
	22.3. Cascading lifecycle
	22.4. Using cascading Update()
	22.5. Conclusion

	Chapter 23. Example: Weblog Application
	23.1. Persistent Classes
	23.2. NHibernate Mappings
	23.3. NHibernate Code

	Chapter 24. Example: Various Mappings
	24.1. Employer/Employee
	24.2. Author/Work
	24.3. Customer/Order/Product

	Chapter 25. Best Practices
	Part I. NHibernateContrib Documentation
	Preface
	Chapter 26. NHibernate.Caches
	26.1. How to use a cache?
	26.2. Prevalence Cache Configuration
	26.3. SysCache Configuration
	26.4. SysCache2 Configuration
	26.4.1. Table-based Dependency
	26.4.2. Command-Based Dependencies
	26.4.3. Aggregate Dependencies
	26.4.4. Additional Settings

	26.5. EnyimMemcached Configuration
	26.6. RtMemoryCache Configuration
	26.7. CoreMemoryCache Configuration
	26.8. CoreDistributedCache Configuration
	26.8.1. Memcached distributed cache factory
	26.8.2. Redis distributed cache factory
	26.8.3. SQL Server distributed cache factory
	26.8.4. Memory distributed cache factory

	Chapter 27. NHibernate.Mapping.Attributes
	27.1. What's new?
	27.2. How to use it?
	27.3. Tips
	27.4. Known issues and TODOs
	27.5. Developer Notes

