® NHBERNATE

NHibernate Reference Documentation

Version: 5.1

Table of Contents

1=, =0 2SRRI viii
1. Quick-start with [1Sand Microsoft SQL SEIVENcccciiiiiiiiii e nennnnnnnnnnns 1
1.1. Getting started With NHIDEINALEcoooiiiiiieeie e 1

1.2, FIrSt PErSISIENT ClESSiveiiiiiiiiie ettt e e e e e s e e e nnne s 2

RS AV = o o T g Te 1 = o PRSPPI 2

1.4, PlayiNg WITN CBLSccoiiuiiiieiiiiiiee ettt e e e e e s e e e e e e e s anbn e e e e s nnnneees 3

LT T o PP PEPPRRPP 6

A o T (o U = RSO 7
P2 I @Y= a1 = SRR 7

2.2, INSLANCE SLALES ...ttt ettt e ettt e e e e e s e e e e e e e e e e e e e e e e e anneees 9

2.3. CONEXLUBl SESSIONSeeeeieeeeeiiiiiiiieiere e e e e e s sttt e aeeessaaat b eaeeeeaeeesaaassesaeeeaaeessaaansseanneaaaeeaaans 10

3. 1SessionFactory CONfiQUIatioNueiiieiiiiiiiiieiee e e e e e e e e r e e e e e e s aeaneeees 11
3.1. ProgrammatiC CONFIQUIBLIONeeeiiiieieeiiiiiee ettt e ettt e e e e e e e e e e e e e ean 11

3.2. Obtaining an [SESSIONFECIONYcovvviiiiiiiiiiiieee ettt e e e e e e e 12

3.3. User provided ADO.NET CONMNECLIONooiiiiiiieiiiiiieeeiiiiee ettt ee e 12

3.4. NHibernate provided ADO.NET CONNECLIONuuviiiiiieeiiiiiiiiiieeee e e e e e 12

3.5. Optional configuration PrOPEITIESueeiiieeeiiiiiiiiei e e e cre e e e e e e e eeeens 15
G I O I - = o £SO 22

3.5.2. Outer JOIN FEIChINGvvviiiiiie e a e 24

3.5.3. CUStOM [CAChEPIOVITEYoieeiiiiieeiee e e e 24

3.5.4. Query Language SUBSHITULIONcoovviviiiiiiiiicicccceeeeeceeeeeeeeeeeee e e 24

G o o] oo PP P PP OUPPPTPTPPRN 25

3.7. Implementing an INamMINGSITAEEgYeeeeeeeeeiiiiiiieeiee e e e et ee e e e e e e e e e e e e s e eneeeeeeeeens 25

3.8. XML Configuration Filccceiiiiiiiiiii et e e et e e 25
S LS = L O TSSO 27
4.1. A SIMPIE POCO EXAMPIE ..eveiiiiiee ettt e e e e e et r e e e e e s s eeatrraeeeeeas 27
4.1.1. Declare properties for persistent fieldsoooiiiiiieiiieee e 27

4.1.2. Implement adefault CONSIIUCIONoovviiiiiiiiieieeeceeeeeeeeeee e 28

4.1.3. Provide an identifier property (Optional)cocueeeeiiiiiiee e 28

4.1.4. Prefer non-sealed classes and virtual methods (optional)ccccooveiciiieiiieee i 28

4.2. IMplementing INNEITANCEcoiiiiee e e e e eeaeas 28

4.3. Implementing Equals() and GetHashCOE()ccvvviieiiiiiieieiie e 28

4.4. DYNAMIC MOUEIS ..o e e e e e e e e e e e s s et b e e e e e e e e e s e snnatrraeeeeeas 29

A5, TUPLIZENS oottt e et e e ekt e e et bt e e e s e e e e e b r e e e e breeeeaa 30

T) L= oo [T O o= o 31

4.7. IValidatable CallDACKooiiiiiiii 32

5. BASIC O/R M@PPING ..teeeeiiiiiieeiiitee ettt e et e e et e e e e s e e e e e ss e e e e ek be e e e e abne e e e e annr e e e e aanbrneeean 33
5.1. Mapping AECIArationcccoiiiiiiiieieee e ce st e e s e e e e e e e s s st a e e e e e e e s eantbbaaeeeaaeeeans 33

9. 1.1 XML NAMESPACE ... 33

5.1.2. hiDErNAE-MEBPPING ..vvveeeieeeeeiiiiiiiie s s seaab b e e e e e eesssenrbrereeeaas 34

TR0 I T o - PRSP 34

5.1 SUDSEIECL ...ttt e e e e 36

ST 05T o PP PP PR 37

S.1.5. 1. QENEIBION ...ooieiiiiiiee et e e e s a e e e 37

5.1.5.2. HIJLO AIQOIITNM L..ovviiiiiicec e e e e 38

5.1.5.3. UUID Hex AIQOIthm ...ooooiieiieeee e n e e e e 39

5.1.5.4. UUID String AlgOrithmouviiiiiii e 39

5.1.5.5. GUID AIQOrITMScoiiiiiiiiieiiiiiie et 39

NHibernate 5.1

NHibernate - Relational Persistence for Idiomatic .NET

5.1.5.6. Identity columMNS aNd SEQUENCEScuvrieiiiiriieeiiieee et 39

5.1.5.7. AsSIgNed [AENLITIErS ..ooooeeeiiiciee e 40

5.1.5.8. Enhanced identifier QenEratorsoccveeeiiiirieeiiiiiee et 40

5.1.6. COMPOSITE-IA ..o 41

o TN A o TR o 1 111 7= (o PR 42
oI R AR V7= €= o) o I (o] 1o 7= | PSSP 43
5.1.9. timestamp (OPLIONAL)ceeieeiiiiiiiee e e e e as 43
5110, PrOPEITY eeeeeeeeiiieitite et e e e e e et eaas 44
oI 00 B O 1= 1 |V (T o = PSP 46
5,102, ONETO-0NE ... 47

ST 0 T P (1 = o R SPRR 49
5.1.14. component, dynamiC-COMPONENTcoiiuurreeiiiireeeaiireeeeeibeeeessbreee s sineeeessnreeeeenees 49
oI I LT 0 0= 4 11 =SSP 50
5.L16. SUDCIESS ...vvviieiiiiiie ettt 51
5.1.17. JOINEA-SUDCIESSccoiiiiiieiiiiiie et 51
5.1.18. UNION-SUDCIBSSceeiiiiiieeiiiiiie ettt e et e s e e e e e e e e enees 52

ST 0 R o 1 o T PO PRSP PPPRP 53
5.1.20. map, Set, liSt, bag ..o 54
TR0 2 T 1 1 1o o PRSP 54

5.2. NHIDEIMEIE TYPES ...eeieiiiiiiie ettt e e e e e e e e s s e e e e a e e e e nanneeeeeans 54
5.2.1 ENtItIES AN VAIUBS ...ttt ettt e e e e 54
5.2.2. BASIC VAIUBTYPESeeiiiiiiee ittt ettt e e e e e e e e 54
5.2.3. CUSIOM VAIUE LYPES ..veiiiiieiiiiiiiitiee et e e e e s ettt e e e e e e e ettt tae e e e e e e e s s santa e e e e e e e s s s nntnraneeeans 58
5.2.4. ANY tYPE MBPPINGS .cuvveeeeeiuiieeeeaaiteeeeeastreeesasber e e e aasbseeesasbe e e e s anbeeeesasareeeaannreeeeennes 59

5.3. SQL quoted identifiers ..., 60
5.4. Modular Mapping filESeeiee e a e 61
5.5. GeNnerated PrOPEITIESciiiiiiiiiii ettt e e e e e e e 61
5.6. Auxiliary Database ODJECESuuiiiiiiie e e et a e e e 61
6. COlECTION MEPPING ..eeeieiiiiie ettt e e e et e e e b e e e e s be e e e e abb e e e e e annr e e e e eanbrneeeans 63
6.1. PersiStent COECLIONSoeiiiiiiiiee ittt e e et e e e s e e e s snnae e e e e nneeeeeeans 63
6.2. MapPINg @ COIECLIONeeiiiiiiiie et e e e sbeeeeean 64
6.3. Collections of Values and Many-To-Many ASSOCIations ..o, 65
6.4. ONE-TO-MaNy ASSOCIBLIONSc.uuvriiiieeeeiiiiiiiieie e e e e et e eei e e e e e e s s s st e e eeaeeeeassasrraaeeaaaeeaaans 67
6.5. LAzZy INITIAlIZBIIONeviiiiiiiie ettt e e e s e e e s e e e e e anrreeeeaa 67
6.6. SOMEA COIECLIONSeiiiiiiiii ettt e e e st e e e s s bb e e e e snteeeeeans 69
A U L= T o = I o (= PSPPSR 69
6.8. Bidirectional ASSOCIBLIONSc..uuueiiiiieeiiiit e e e et e e e e e e e s st e e e e e e e e s asntbbeeeeeaaeeaan 70
6.9. Bidirectional associationswith indexed COlleCtionsSceeviveeiiiicciice e 71
6.10. Ternary ASSOCIALIONScccoeeeeeee e 72
6.11. HEterogeneoUS ASSOCIBLIONSuueiiieeeeiiiiiiiiieeeee e e s e eeitirreeeeae e s s s ssaatraeeeeaeessssnatrrnaeeaaaeeaaans 72
6.12. COIlECioN EXAMPIESeiiieiiiii et e e e e e 73
A Oelaq]oTo o l= 0 A\Y = To] o] o o RSP 75
7.1. DEPENTENT ODJECESeeeeiieiiiiee ettt e e e e et e e e s e e e s ne e e e e nnbreeeean 75
7.2. Collections of dependent ODJECEScoooeeeiiii i, 76
7.3. Components as IDICLiONAY INAICEScoiiiiiiieiiiiie e 77
7.4. Components as COMPOSItE IAENEITIENSooiiieeiieiieie e e e e e 77
7.5. DYNAMIC COMPONENTSeeiiieeeiiiiiiiieieeeeeeese sttt eeeeeeessaesatbaaeeeaaeessasasntsaeeeaaessasannssraneeaaaeesaans 78
8. INNEITTANCE M BPPING +.eeeiiiieee ettt et e et e e ekt e e e e abb e e e e anr e e e e e anbrneeeans 79
8.1, ThE THIEE SLIALEUIES .. uvvieiiie e e i ittt e e e e e e e e e e e e s e s st r e e e eaeeesseatbbaeeeaaaeeaans 79
8.1.1. Table per class hierarChy ..o 79
8.1.2. Tableper SUDCIESSccooeeee 80
8.1.3. Table per subclass, using @ diSCIHIMINGLOTeeiiiiiiiie e 80

NHibernate 5.1

NHibernate - Relational Persistence for Idiomatic .NET

8.1.4. Mixing table per class hierarchy with table per subClassccceeeviiiiiiiiiieccee 81
8.1.5. Table per CONCIELE CIasScccvviiiiiii e 81
8.1.6. Table per concrete class, using implicit polymorphism ... 82
8.1.7. Mixing implicit polymorphism with other inheritance mappingscccoeeeeeee. 82

8.2, LIMITALIONS ..eeeiiieieiiiiiitiie e e e e ettt e e e e s e e e e e e s e e ettt e e e e e e e e s s s snbeaeeeeaeeeeanntrbnneeaaaeeeaans 83
9. Manipulating PerSiStENt DALAeeiiiieeeiiieiiiiiee et e e et e e e e e e e et e e e e e e e e nenaeeeeeeas 85
9.1. Creating apersistent ODJECEcvviiiiiiiee e e a e e 85
9.2. LOBAING 8N ODJECEeeeiiiiiie ettt ettt e e e e e e e e e e e r e e e e anrreeeean 85
LS G @ 1 1= oY/ 1 oo USSR 86
0.3, 1. SCAlAI QUENTES ...ttt ettt e e et e e et e e e e 87
9.3.2. The lQUEry INtErface ... 88
0.3.3. FItering COHBCIIONSeeeieiiiiiie ettt 89
S N O] (= g = o U= 1= SO 89
9.3.5. QUENESTNNAIVE SQL ... 90

9.4. UPAating OBJECESeeiiiiiiiie et 90
9.4.1. Updating in the SAME ISESSIONcccieeiiiiiiiiiiiiee et 90
9.4.2. Updating detached ODJECESoooiiiiiiec e 90
9.4.3. Reattaching detached ObjeCtS ... 92

9.5. Deleting persistent ODJECLSccc.uiiiiiiiie e e e e e s e e e e e e e st rraaaeeaan 92
0.6, FIUSN <. ettt e e e e e e et e e e te e e e e e nat e e e e anaeeeeennrreeeeans 92
9.7. CheCKING AIMTINESSuvviiiiie et e e e e e e e e e s s st e e e e e e e e s ssntbraeeeeaaeeaans 93
0.8, ENUING @ SESSION ...ttt ettt e e et e e e et e e e e e abe e e e e e b e e e e e nnbreeeean 93
9.8.1. FIUShING thE SESSIONcoiieiiiiiiiiiee e e e e e e e e e s e abbraeeeeeas 9
9.8.2. Committing the database tranSaCtiONccoiceiiieiiiiiee e 9
0.8.3. CloSING the ISESSIONccoeeeeeeceee e 94

9.9. EXCEPLION NANAIINGvvveieiiee e e e e e s s e e e e e e e et ra e e e aaeeaan 95
9.10. Lifecyclesand ODJECE GraphScooiiiiiiiiiiie et 95
8 I I 1 1 (o o) o = PSPPI 96
9.12. Metadata APl ..., 98
10. REAA-ONIY ENEITIES ..uvviiiiiiici e e e e e e e st e e e e e e e e e e e eta b e e e e e e e e e e s senntrraeeeeeas 99
10.1. Making persistent entitieS reat-0nlyoooiiiiiiiiiiie e 99
10.1.1. Entities of immMUEADIE ClASSESceei i 100
10.1.2. Loading persistent entities as read-0nlyoocccvieiirieee i 100
10.1.3. Loading read-only entities from an HQL query/criteriaccccceevvvveeeiiiinneennne 101
10.1.4. Making apersistent entity read-0nlycccccoeviiiiiiiiiieiee e 102

10.2. Read-only affeCt 0N ProPertY LYeeeie ettt 102
10.2.1. SIMPIE PIrOPEITIESuuuuiuii s nnannnnsnnnnnsnnnnnnnnnnns 103
10.2.2. Unidirectional aSSOCIALIONScviieiiiiciiiiiiiieee e s e ettt ee e e e e e s e snrarer e e e e e s e esnsrraeeeeeas 104
10.2.2.1. Unidirectional one-to-one and many-t0-0Neccccceceirnmmnnnnnnnnnnnnnnnnnnnn. 104

10.2.2.2. Unidirectional one-to-many and many-to-manycccccccvvveveeeeessiennnne 105

10.2.3. BidireCtional 8SSOCIALIONSceeiieeeiiiiiiiiiiieee e e s e ettt e e e e e e e s e e e e e e e s e eeneneeeeeeens 105
10.2.3.1. Bidirectional ONE-T0-0MNEccuueieiiiiiieeeiiiiee e 105

10.2.3.2. Bidirectional one-to-many/many-to-0Necccveerriereeriiireeesnireeee e 106

10.2.3.3. Bidirectional many-to-Manyccccccceceieieieiiunnnnnnnnnnnnnnnnnnnenennnennan———.. 106

11. TransactioNS AN CONCUITENCYuvveieiiiiiieeiaiieee e ettt e e sttt e e s ssbe e e e s asbe e e e s asae e e e s annbeeeessnbneeaeans 107
11.1. Configurations, SesSioNS and FACIOMNEScoeiiiiiiiiiiiiee e e 107
11.2. Threads and CONMNECLIONSocieiiiiiieeiiiiiee ettt e st e e e e e e e s abe e e e s sbbe e e e s nnbaeeeeans 107
11.3. Considering ODJECE IAENTITYoeeiiiieieeiiei it e e 108
11.4. Optimistic CONCUITENCY CONIOIcoiiiiiiiieiiee e e e e e e aneres 108
11.4.1. Long session With automatic VErSIONINGceeeiiurieeiiiieieeeiieee s e sineee e 108
11.4.2. Many sessions With automatic VErSIONINGeuuueuemmmmnnnrnnnnnnnnnnnnnnnnnnnnnnnnnnnn. 109
11.4.3. Customizing autOMatiC VErSIONINGuveeeiiiireeeiiiieeeesiieee e siree e s s ee e sneeee e 109

NHibernate 5.1

NHibernate - Relational Persistence for Idiomatic .NET

11.4.4. Application VErsion CNECKINGccoiiiriieiiiiiie et 110

11.5. SeSSI0N AiSCONNECTIONeeieiiiiiieeeiiiiee e ettt e e e ettt e e st e e e s e e e e e bt e e e s sbeeeeesannbeeeeennraeeeeans 110

11.6. PESSIMISIIC LOCKINGvviiieiiiiiie ettt e e e 111
11.7. ConNection REIEESE MOUESoiiiiiiiiiiiiee e e 112

11.8. Transaction SCOPes (SyStemM.TraNSACLIONS)vvveeriiiieieiieie et e e seaee e 113

12, INterCePLOrS AN EVENTS ...t e e e e e st e e e e e e e e e et e e e e e e e e e e anenreeeeeens 114
0 g (0= o (0 114

12,2, EVENE SYSIOIM .ot e e e e e e e e e e e e e s 115

G T ot T o o o=] T PRSP 117
G I T ot g T 1S o £ SSEPR 117
13.2. The Statel @SSSeSSION INEEITACEeoeiiieiiiei e e e e e 118

13.3. DML-SIYI€ OPEFELIONScieiiiiiieeiiitiiee e ettt ettt e e et e e s st e e s abb e e e e e nnbneeeeans 118

14. HQL: TheHibernate QUErY LanQUAGEccueeeeeiiioieiiieieeeeeeeaaiiieieeaaaeesaanneeeeeeaaeesssaneneeeeeeens 121
14,1, CASE SENSIIVITY .vvvieeiiiiiiee ettt et et e e e st e e s sbb e e e s anbb e e e e s nnbaeeeean 121

14.2. TRETIOM ClAUSEeeeieiie ettt e e e e e e r e e e e e e e st re e e e e e e e e ennneeees 121
14.3. ASSOCIAONS AN JOINSeeiiiiieiiie et e e e e e e e e e et e e e e e e e s s sanbere e e e e e e e e enanerees 121

14.4. THE SEIECE ClAUSE ...veiiiieei i ittt ettt e e e e e e e e e e et e e e e e e e s s ssntaaneeeeeeesannnnnees 122

14.5. AQQregate FUNCLIONS ... annsnsnsnsnsnnnnnnnnnnns 123

14.6. POIYMOIPIIC QUETTESccoiiiiiieee ettt e e e e e e e r e e e e e e s st e e e e e e e e s annnneees 123

14.7. TREWREIE ClAUSEeeiiiiee ittt e e e e e e ettt e e e e e e e e e e nneeaeeeeaeeeeennnneees 124

R R o (=== o] T PURPRR 125

14.9. TRE Order DY ClAUSE ...t e e nnree e e e 127
14.10. ThEGroUup DY CIALSE ...t e e e et e e e e e e e enerees 128

TA. 10, SUD-QUETTES ...ttt ettt e et e e s st e e e nbb e e e e e nnbneeeeans 128
14.12. HQL @XAMPIES ...uiiiiiii s s nnnnnsn s s s nnnnnnnnnnnnnnns 129
T T W oS I o< T PSRPRR 130

T O) = T O = RS 132
15.1. Creating an |CriterfaiNStaNCecooiiiiiiiieieee e e e e e e e nannes 132

15.2. Narrowing the reSUIT SELvviiiiiieiieee e 132

15.3. Ordering thE TESUILSccoiiiiiieee e e e e e e e e e e e e st r e e e e e e s e eanerees 133
NS o - 4o T RSP 133
15.5. Join entities without association (Entity joins or ad hoC jJOINS)cccccecvcnennnnnnneninnnnnnnnns 133

15.6. Dynamic association fEtChINGoocciiiiiiiie e 134

15.7. EXBMPIE QUETTES ..ottt ettt e e e et e e e s ase e e e s e e e e e e anrneeeeans 134

15.8. Projections, aggregation and groUpiNgeeeeeeeeoiciivieeeeeeessiiiinreeeeeeeeessssssssneseeesessennnsens 135

15.9. Detached queries and SUD-QUETTESoouuiiieiiiiiiee et snbeee e 136

16. QUENYOVEr QUEITES ...uuuiuiiiiii i s s aannasnsnanaasnsssnsnsnnnsnsnsnnnssnnsnnnnnnnnnnnn 137
16.1. SErUCLUIE OFf @ QUENY ...ttt ettt ettt ettt e e et e e s abb e e e e anbb e e e e e nnbneeeeans 137

16.2. SIMPIE EXPIESSIONS ...oeeeiiieiiiiieeeee e e e ettt e e e e e e e sttt e e e e e e e e aananteeeeeaaeeesaanntnneeeeaaeseaannneees 137
16.3. AdditioNal RESLIICHIONScciiuviiiieiiiiiee ettt e e sbb e e e snbneeeean 139

L NS o o = 1o RSP 139
16.5. Join entities without association (Entity joins or ad hoC jOINS)cccovvviviiiiieeeeeniicnnee, 140

TG T N 1T= = - R 140

T (0= (0] 141
16.8. ProjeCtion FUNCLIONScooiiiiiiiiiiiiiee ettt e ebb e e e nnbaeeeean 142
e I =1L =] o o= o1 o o SRR 142
T O T o o (11 = S PERPR 143

17, LiNG QUETTES ettt ettt e ekt e e e et e e e R et e e ek e e e e e e b e e e e e e b n e e e e nrneeeeans 144
17.1. Structure Of @ QUETY ...oceiiiiiieeee et e e e e e e e et e e e e e e e e s ean b e e e e e e e e e e ananerees 144

17.2. PalaMELES TYPESeeeeeiieeieieiitiee et e e e e s ettt e e e e e e st e e e e e e e e s e n bbb e e et e e e e e e e e e e e e e e e e e aannrees 145
17.3. Supported methods and MEMDENS ... nnannrnnes 145
17.3.1. COMMON MELNOASoeeeeiiiiiieiie et e e e e e e e e e e e e et raeeeaeas 145

NHibernate 5.1

NHibernate - Relational Persistence for Idiomatic .NET

17.3.2. DateTime and DateTimeOTSalcciiiiiiiiiiee e 146
17.3.3. ICallection, non generic and gENEICuveiieeeei i 146
17.3.4. IDictionary, NON generic and GENEYICoeevivrrieeiiieee et e et e e 146
17.3.5. Mathematical TUNCLIONSuiiiiiiiiiiiiiiie e 147
17.3.6. NUIBDIES ... e aaasaanansnsasnsnnnsnnes 147
G B A] o S 147

L17.4. FULUIE FESUITS ...eeteiee ittt ettt ettt e ettt e e et e e s s bt e e e e snbb e e e e e nnbneeeean 148
17.5. FELChING 8SSOCIBLIONSceeiuiiiieeiitiee e ettt e e ettt e ettt e et e et e e s st e e e s anre e e e anrneeeeans 148
17.6. Modifying entitiesinside the datahasecoooviiiiiiiiiii e, 149
17.6.1. INSErtiNg NEW ENEITIES ...eeiiiiieieiiieie ettt e e 149
17.6.2. UPdating ENLITIESuuuiiiiiiiiiiii s asannnnnnnnnnnnnnnnnnnnnns 150
17.6.3. DEIENG ENLITIESeveieeiiiiiie et 151

17.7. QUENY CACNE ...ttt e e e e e e e ettt e e e e e e e e e et eeeeaaaeeeaanneeees 151
17.8. Extending the Ling to NHibernate providercccoeeviieiiiiiciieieecee e 151
17.8.1. Adding SQL FUNCLIONSoviiiiiiiiieeiitieee ettt 151
17.8.2. Adding & CUSLOM GENEIGLOTvvveiieeeeiiiiiiiieeee e e e e e cetire e e e e e e e s e s e e e e e e e s e e arrraeeeeeas 152

G T A P L= S SRR 155
18.1. USING @N ISQLQUENY ...eeeieeeiiiiieeeeiteieeessiieeeeeestee e e e st e e e s snseeeeesnnseeeeeanseeeeaannseeeesansnneeeans 155
G S o = o (11 4 = SRR 155
18.1.2. ENLILY QUEITES ...oeieeiiiiieeeeiiiee ettt et e s e e e e e e e 155
18.1.3. Handling associations and COlIECHIONSccoviiiiiiiiiiiiee e 156
18.1.4. Returning MUItiple @NEITIESvviiiiiiiiee e 156
18.1.4.1. Alias and property referenCeScccvvieeeee e 157

18.1.5. Returning NoN-managed ENtItIESc.vveeeiiiiiie e 158
18.1.6. Handling iINNETANCEuuii e nnnnnnnnes 158
18.0.7. PaIAIMELENS ...ttt e e et e e e e e e e e e e e e e e s e e e beeeaeeas 158
18.2. NaMEd SOQL QUENTESeeiieiiiiieee et e sttt e e e e e e s s e e e s r e e e e annneeeeans 159
18.2.1. Using return-property to explicitly specify column/aliasnames...............ccccvveeeee... 160
18.2.2. Using stored procedureS fOr QUEIYINGcoocuereeeiurreeeiiieieesniieeessieeeeessineee e 161
18.2.2.1. Ruleg/limitations for using stored proceduresccceevcvvvieeeeeeeseecnnnne, 161

18.3. Custom SQL for create, update and deleteoccvviiiiieie e 162
18.4. Custom SQL fOr [0B0INGuuuuuuuiiiiiiiiiii i nsanasnsnsnsnnnsnnnnnnnsnnns 163
RS I T (= T g [F= L PR 164
19.2. NHIDEINAE FIITEIS .oeeeiiee et e e e e s e e e e e e e e nnneeees 164
20. IMProving PErfOrMANCEocciiiieieeee et e e e e e e e e e e e e e s e e stbba e e e e e e e e e s aaanreees 166
20.1. FELCNING SITALEOIESceiieeeee ettt ettt et e st e e s e e e e st e e e e e snbaeeeeans 166
20.1.1. Working with lazy assoCiationscccccceeeeeeie i, 166
20.1.2. TUNIiNg FELCH SITALEJIES ...eoiiieeiee et 167
20.1.3. Single-ended assOCIiatioN PrOXIESoiccuviieiereaeeeaiaciiiieeeee e e e e eaeeeeeereaae e e e aenneees 168
20.1.4. Initializing collectionNS aNd PrOXIi€Soccvvvieieeeee e e e ettt e e e e 169
20.1.5. USiNg batCh fEECNINGeeeiiiiiiieee e 170
20.1.6. Using SUbSEleCt TELCNINGc.evviiiieieee e e 171
20.2. The SECONd LEVEl CaChE ...ttt e e e r e e e e e e 171
20.2.1. CaChe MaPPINGS ...ccoeeeeiee e 172
20.2.2. Strategy: 1820 ONIYveiiieiiiiee ettt 172
20.2.3. Strategy: FEAAIWIITEcoeii i ettt e e e e e e et e e e e e e e e e enneees 172
20.2.4. Strategy: NONSLHCE FEA/WIITEvveeeiee e 173
20.3. Managing the CaCESccoiiiiiieii e 173
20.4. TRHE QUENY CACNEuviiiiiii et e e e e s e e e e e e s s st r b e reeeaaeeeaas 174
20.5. Understanding Collection performanCecc.eeeeiiiiieoiiiiee e 174
FZ(0 R I = (o T Y/ 175
20.5.2. Lists, maps, idbags and sets are the most efficient collectionsto update 175

NHibernate 5.1

NHibernate - Relational Persistence for Idiomatic .NET

20.5.3. Bags and lists are the most efficient inverse collectionscccccveevieeeeiiicnnee. 176

20.5.4. ONE SNOL AEIELEceeiiieeie et e s e e e e snteeeeean 176

20.6. BACN UPAELES ...ttt e s sttt e e e e e e e e nnbae e e e 176
20.7. MUILE QUENY ..eeieiiiieee e ettt e et e e sttt e e ettt e e e ettt e e e st e e e e enste e e e e antteeeeansseeeeeansbeeeesansneeeeans 177
20.8. MUILE CHITEITA 1.oeii ittt s et r e e e e e s e reea e e s s ssaba b e e eeaaeessasnssrnnenaaaeesaans 178

P2 I oo <] 1o [ST 179
21.1. SCREMA GENEIALIONcouiieiee ittt ettt ettt e e et e e s st b e e s s nb b e e e e anbeeeesanbaeeeeans 179
21.1.1. Customizing the SChEMAoiiiiiiie e 179

21.1.2. RUNNING tNETOOIuviiiieiie et e e e e e aneees 180

22. Example: Par@nt/CRIlAocueeiiiiiiie e 182
22.1. A Note aDOUL COIECTIONS ... e e e e e 182
22.2. Bidirectional ONE-tO-MENYcccoiuriiiiiiiiieeeiiiiee et e e e e e sbbe e e s snbaeeeeans 182

22.3. CasCadiNg IFECYCI@ ..o e e e e e e e e e e e e 183

22.4. Using cascading UpPdate()cccvvverereeeiiiiiiiieiiee et e e e e s e e e e e e e e e e 184

p2728 T o o U1 T] o PP SOPPPRRRR 186

23. Example: WebIog APPICALIONueiiiiiiii e e e neeees 187
23.1. PErSIStENE ClASSES ...uvvviiiiieeeeiiiiitiierttee et s iastiteeeraaeeesassstarereeaessaaassaraeeeeaesssasnsssnseneaaeessans 187

23.2. NHibernate Mappingsccooeeeiiieee e, 187

23.3. NHIDEMNAE COUR ..ottt e s e e e snbaeeeean 188

24. EXample: VarioUS M aDPINGSeeeeiirrieeiaiieieeaiiiee e e st e e e st e s s e e e s asss e e e assnreeesanneeeessnnneeeans 192
24.1. EMPIOYEITEMPIOYEE ..oeeiiieeiiicieeee ettt e e e e e s et e e e e e e s e a st rareeeaaeesan 192

W 11 07 7AYo 5 PR SSPPSRRR 193
24.3. CuStOME/OrAEr/PrOTUCEveeieiiiiiie e et siee e ee e e e e st e e e e nneee e e e anbeeeessnraeeeeans 195

P T =T - Tox o SRR 198
I. NHibernateContrib DOCUMENEELIONuuiiiiieeiiiiiiiiei e e e e ettt e e e e e e e et e e e e e e e s eneeeeeeeeaeeeeans 200
== ol PP PSPPSR cci

26. NHIDErNALE.CACNESeiiiiieiiiiiiiiiie ettt et e e e e e et e e e e e e e e s ennneneeeaaaeeeans 202
26.1. HOW tO USB @ CACKNE?ieeiii ettt nnaaee e 203

26.2. Prevalence Cache ConfigUIaionoccuveeeeiiireeesiiiiie et e s e e e e 204

26.3. SysCache Configurationcccuueiiiiieeei e e e e e eaneees 204

26.4. SySCache2 CONfIQUIELIONveeeeiiiiiie ettt e st e e 205

26.4.1. Table-based DePendenCycoooveeeeeiiee 205

26.4.2. Command-Based DEPENTENCIEScocecuviiiiiiiee e 206

26.4.3. Aggregate DEPENTENCIEScccoriuiireeiiiieiee st e e e s e e 207

26.4.4. Additional SELINGSoevieeeiiiiiiieiee e e e a e e e 208

26.5. EnyimMemcached Configurationccceeeeiiiriieiniiiiee e 209

26.6. RtMemoryCache Configurationccooeeeeeiiiei e, 209

26.7. CoreMemoryCache COonfigUIalionc.eeeeeiiiriieiiiiiiie e e e 209

26.8. CoreDistributedCache Configurationccccee i, 210

26.8.1. Memcached distributed cache factoryccccccoiiiviiiiiiii e, 211

26.8.2. Redis distributed cache faCtoryoccoeieiiiiiieeiieee e 211

26.8.3. SQL Server distributed cache factoryccccevvveiiiiiiiiieiee e 212

26.8.4. Memory distributed Cache factoryccccviiiiiiiiiiiee e 212

27. NHibernateMapping.Attributesccco 214

P O TV =Y = SRR 214

27.2. HOW O USBIL? ooeeiiiee ettt ettt ettt e e et e e e et e e e ennee e e e e nnseneeeansneneeans 215

2 T T oL PSSR 216

27.4. KNOWN iSSUES AN TODOSuuviiiiiiiieeessiiiiiieieeeee e e s s sieeeeeeeeeesssnnsnaeeeeeaaeesaennneees 218

27.5. DEVEIOPEr NOLESuuiiiiiiie et e e e s e e e e e e s e st e e e e e e e s e s e atb e e eeeeeeeseennneees 218

NHibernate 5.1

Vii

Preface

Working with object-oriented software and a relational database can be cumbersome and time consuming in
today's enterprise environments. NHibernate is an object/relational mapping tool for .NET environments. The
term object/relational mapping (ORM) refers to the technique of mapping a data representation from an object
model to arelational data model with a SQL-based schema.

NHibernate not only takes care of the mapping from .NET classes to database tables (and from .NET data types
to SQL data types), but also provides data query and retrieval facilities and can significantly reduce develop-
ment time otherwise spent with manual data handling in SQL and ADO.NET.

NHibernate's goal is to relieve the developer from 95 percent of common data persistence related programming
tasks. NHibernate may not be the best solution for data-centric applications that only use stored-procedures to
implement the business logic in the database, it is most useful with object-oriented domain models and business
logic in the .NET-based middle-tier. However, NHibernate can certainly help you to remove or encapsulate
vendor-specific SQL code and will help with the common task of result set translation from a tabular represent-
ation to agraph of objects.

If you are new to NHibernate and Object/Relational Mapping or even .NET Framework, please follow these
steps:

1. Read Chapter 1, Quick-start with I1Sand Microsoft SQL Server for a 30 minute tutorial, using Internet In-
formation Services (11S) web server.

2. Read Chapter 2, Architecture to understand the environments where NHibernate can be used.

3. Use this reference documentation as your primary source of information. Consider reading Hibernate in
Action [https://mww.manning.com/books/hibernate-in-action] (java) or NHibernate in Action
[https: //mvwv.manning.comy/books/nhibernate-in-action] or NHibernate 4.x Cookbook - Second Edition
[https: //mwww. packtpub.convapplicati on-devel opment/nhiber nate-40-cookbook] or NHibernate 2 Begin-
ner's Guide [https:/mww.packtpub.convapplication-development/nhiber nate-2-beginners-guide] if you
need more help with application design or if you prefer a step-by-step tutorial. Also visit ht-
tp://nhibernate.sourceforge.net/NHibernateEg/ for NHibernate tutorial with examples.

4. FAQsare answered on the NHibernate users group [https://groups.google.com/forum/#! forum/nhusers] .

5. The Community Area on the NHibernate website [http://nhibernate.info/] is a good source for design pat-
terns and various integration solutions (ASP.NET, Windows Forms).

If you have questions, use the NHibernate user forum [https://groups.google.com/forum/#! forum/nhusers]. We
also provide a GitHub issue tracking system [https://github.com/nhibernate/nhibernate-coref/issues] for bug re-
ports and feature requests. If you are interested in the development of NHibernate, join the developer mailing
list. If you are interested in tranglating this documentation into your language, contact us on the developer mail-
ing list [https://groups.google.com/forum/#! forum/nhibernate-devel opment].

NHibernate 5.1 Viii

https://www.manning.com/books/hibernate-in-action
https://www.manning.com/books/hibernate-in-action
https://www.manning.com/books/nhibernate-in-action
https://www.packtpub.com/application-development/nhibernate-40-cookbook
https://www.packtpub.com/application-development/nhibernate-2-beginners-guide
https://www.packtpub.com/application-development/nhibernate-2-beginners-guide
http://nhibernate.sourceforge.net/NHibernateEg/
http://nhibernate.sourceforge.net/NHibernateEg/
https://groups.google.com/forum/#!forum/nhusers
http://nhibernate.info/
https://groups.google.com/forum/#!forum/nhusers
https://github.com/nhibernate/nhibernate-core/issues
https://groups.google.com/forum/#!forum/nhibernate-development
https://groups.google.com/forum/#!forum/nhibernate-development

Chapter 1. Quick-start with 1IS and Microsoft SQL
Server

1.1. Getting started with NHibernate

This tutorial explains a setup of NHibernate 5.0.0 within a Microsoft environment. The tools used in this tutori-
a are:

1. Microsoft Internet Information Services (11S) - web server supporting ASP.NET.

2. Microsoft SQL Server 2012 - the database server. This tutoria uses the desktop edition (SQL Express), a
free download from Microsoft. Support for other databases is only a matter of changing the NHibernate
SQL dialect and driver configuration.

3. Microsoft Visua Studio .NET (at least 2013) - the development environment.

First, we have to create a new Web project. We use the name Qui ckStart . In the project, add a NuGet refer-
ence to NHi ber nat e. Visual Studio will automatically copy the library and its dependencies to the project output
directory. If you are using a database other than SQL Server, add a reference to its driver assembly to your
project.

We now set up the database connection information for NHibernate. To do this, open the file web. conf i g auto-
matically generated for your project and add configuration elements according to the listing below:

<?xm version="1.0" encodi ng="utf-8" ?>
<confi guration>
<l-- Add this element -->
<confi gSecti ons>
<section
nanme="hi ber nat e- confi gurati on"
type="NHi ber nat e. Cf g. Confi gurati onSecti onHandl er, NH bernate" />
</ confi gSections>

<l-- Add this elenent -->
<hi ber nat e- confi gurati on xm ns="urn: nhi ber nat e-confi guration-2.2">
<sessi on-factory>
<property nanme="di al ect”>NH bernate. D al ect. MsSql 2012Di al ect </ property>
<property nane="connection.connection_string">
Server =l ocal host\ SQLEXPRESS; i ni ti al catal og=qui ckstart;Integrated Security=True
</ property>

<mappi ng assenbl y="Qui ckStart" />
</ sessi on-factory>
</ hi ber nat e- conf i gurati on>

<l-- Leave the other sections unchanged -->
<syst em web>

</ syst em web>
</ confi guration>

The <confi gSect i ons> element contains definitions of sections that follow and handlers to use to process their
content. We declare the handler for the configuration section here. The <hi ber nat e- conf i gur ati on> section
contains the configuration itself, telling NHibernate that we will use a Microsoft SQL Server 2012 database and
connect to it through the specified connection string. The dialect is a required setting, databases differ in their
interpretation of the SQL "standard". NHibernate will take care of the differences and comes bundled with dia-

NHibernate 5.1 1

Quick-start with [1S and Microsoft SQL Server

lects for several major commercia and open source databases.

An | Sessi onFact ory is NHibernate's concept of a single datastore, multiple databases can be used by creating
multiple XML configuration files and creating multiple Confi gur ati on and | Sessi onFact ory objects in your
application.

The last element of the <hi ber nat e- confi gur ati on> section declares Qui ckStart as the name of an assembly
containing class declarations and mapping files. The mapping files contain the metadata for the mapping of the
POCO class to a database table (or multiple tables). We'll come back to mapping files soon. Let's write the
POCO classfirst and then declare the mapping metadata for it.

1.2. First persistent class

NHibernate works best with the Plain Old CLR Objects (POCOs, sometimes called Plain Ordinary CLR Ob-
jects) programming model for persistent classes. A POCO has its data accessible through the standard .NET
property mechanisms, shielding the internal representation from the publicly visible interface:

nanespace Qui ckStart

{
public class Cat

{
public virtual string Id { get; set; }

public virtual string Name { get; set; }
public virtual char Sex { get; set; }

public virtual float Weight { get; set; }

}

NHibernate is not restricted in its usage of property types, all .NET types and primitives (like stri ng, char and
Dat eTi ne) can be mapped, including classes from the Syst em Col | ecti ons. Generi ¢ hamespace. Y ou can map
them as values, collections of values, or associations to other entities. The I d is a special property that repres-
ents the database identifier (primary key) of that class, it is highly recommended for entities like a cat .
NHibernate can use identifiers only internally, without having to declare them on the class, but we would lose
some of the flexibility in our application architecture.

No special interface has to be implemented for persistent classes nor do we have to subclass from a special root
persistent class. NHibernate also doesn't use any build time processing, such as IL manipulation, it relies solely
on .NET reflection and runtime class enhancement. So, without any dependency in the POCO class on
NHibernate, we can map it to a database table.

For the above mentioned runtime class enhancement to work, NHibernate requires that all public properties of
an entity class are declared as vi rtual . It also requires a parameter-less constructor: if you add a constructor
having parameters, make sure to add a parameter-less constructor too.

1.3. Mapping the cat

The cat . hbm xmi mapping file contains the metadata required for the object/relational mapping. The metadata
includes declaration of persistent classes and the mapping of properties (to columns and foreign key relation-
ships to other entities) to database tables.

Please note that the cat . hbm xm file should be set to an embedded resource.

NHibernate 5.1 2

Quick-start with [1S and Microsoft SQL Server

<?xm version="1.0" encodi ng="utf-8" ?>
<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 2"
nanespace="Qui ckStart" assenbl y="Qui ckStart">

<cl ass nanme="Cat" tabl e="Cat">
<I-- A 32 hex character is our surrogate key. It's automatically

generated by NH bernate with the UU D pattern. -->
<id name="1d">

<col um nane="Catl d" sql -type="char(32)" not-null="true"/>
<generator class="uuid. hex" />
</id>
<l-- A cat has to have a name, but it shouldn't be too long. -->
<property nanme="Nanme">
<col um nane="Nane" | ength="16" not-null="true" />

</ property>

<property nanme="Sex" />

<property nane="Weight" />
</ cl ass>

</ hi ber nat e- mappi ng>

Every persistent class should have an identifier attribute (actually, only classes representing entities, not de-
pendent value objects, which are mapped as components of an entity). This property is used to distinguish per-
sistent objects: Two cats are equd if cat A. 1 d. Equal s(cat B. | d) istrue, this concept is called database identity.
NHibernate comes bundled with various identifier generators for different scenarios (including native generat-
ors for database sequences, hi/lo identifier tables, and application assigned identifiers). We use the UUID gen-
erator (only recommended for testing, as integer surrogate keys generated by the database should be preferred)
and also specify the column cat I d of the table cat for the NHibernate generated identifier value (as a primary
key of the table).

All other properties of cat are mapped to the same table. In the case of the Nane property, we mapped it with an
explicit database column declaration. Thisis especialy useful when the database schema is automatically gen-
erated (as SQL DDL statements) from the mapping declaration with NHibernate's SchemaExport tool. All other
properties are mapped using NHibernate's default settings, which is what you need most of the time. Here the
specification of the table name with the attribute t abl e is redundant, it default to the class name when not spe-
cified. Thetable cat in the database looks like this:

Col um | Type | Modifiers
________ e
Catld | char(32) | not null, primry key
Name | nvarchar (16) | not nul

Sex | nchar (1) |

Wi ght | real |

Y ou should now create the database and this table manually, and later read Chapter 21, Toolset Guide if you
want to automate this step with the SchemaExport tool. This tool can create a full SQL DDL, including table
definition, custom column type constraints, unique constraints and indexes. If you are using SQL Server, you
should also make sure the ASPNET user has permissions to use the database.

1.4. Playing with cats

We're now ready to start NHibernate's | Sessi on. It is the persistence manager interface, we use it to store and
retrieve Cat sto and from the database. But first, we've to get an | Sessi on (NHibernate's unit-of-work) from the
| Sessi onFactory:

| Sessi onFactory sessionFactory =
new Configuration().Configure().Buil dSessionFactory();

NHibernate 5.1 3

Quick-start with [1S and Microsoft SQL Server

An | SessionFactory is responsible for one database and may only use one XML configuration file
hi ber nat e. cf g. xnl). You can set other properties (and even change the mapping metadata) by
accessing the Confi gur ati on before you build the | Sessi onFact ory (it isimmutable). Where do we create the

(veb. config or

| Sessi onFact ory and how can we accessiit in our application?

An | Sessi onFact ory is usualy only built once, e.g. at start-up inside Appl i cati on_Start event handler. This
also means you should not keep it in an instance variable in your ASP.NET pages or MV C controllers, but in
some other location. Furthermore, we need some kind of Sngleton, so we can access the | Sessi onFact ory €as-
ily in application code. The approach shown next solves both problems. configuration and easy access to a

| Sessi onFactory.

We implement a NHi ber nat eHel per helper class:

usi ng System

usi ng System Wb;

usi ng NHi ber nat g;

usi ng NHi bernate. Cf g;

nanespace Qui ckStart

{

public seal ed cl ass NHi ber nat eHel per

{

private const string Current Sessi onKey = "nhi bernate. current_sessi on";
private static readonly | SessionFactory _sessionFactory;

static NHi bernat eHel per ()

{

}

publ
{

publ

_sessionFactory = new Configuration().Configure().Buil dSessionFactory();

ic static |Session GetCurrent Session()

var context = HttpContext. Current;
var current Session = context.|temns[Current Sessi onKey] as | Sessi on;

if (currentSession == null)
{
current Sessi on = _sessi onFact ory. OpenSessi on();
context.|tens[Current Sessi onKey] = current Sessi on;
}

return current Sessi on;

ic static void O oseSession()

var context = HttpContext.Current;
var currentSession = context.|tens[CurrentSessi onKey] as | Sessi on;

if (currentSession == null)

/1 No current session
return;

}

current Sessi on. G ose();
context.|tenms. Renbve(Current Sessi onKey) ;
ic static void Cl oseSessi onFactory()

if (_sessionFactory != null)

{
}

_sessi onFactory. Cl ose();

NHibernate 5.1

Quick-start with [1S and Microsoft SQL Server

This class does not only take care of the | Sessi onFact ory with its static attribute, but also has code to remem-
ber the I sessi on for the current HT TP request.

An | Sessi onFact ory is threadsafe, many threads can access it concurrently and request | Sessi onS. An | Ses-
si on is a non-threadsafe object that represents a single unit-of-work with the database. | Sessi ons are opened
by an | Sessi onFact ory and are closed when all work is completed:

| Sessi on sessi on = NHi ber nat eHel per. Get Current Sessi on() ;

try
{
using (Il Transaction tx = session. Begi nTransacti on())
{
var princess = new Cat
{
Name = "Princess"
Sex = "'F,
Wei ght = 7. 4f
H
sessi on. Save(pri ncess);
tx. Commit();
}
}
finally
NH ber nat eHel per. Cl oseSessi on();
}

In an | Sessi on, every database operation occurs inside a transaction that isolates the database operations (even
read-only operations). We use NHibernate's | Transacti on APl to abstract from the underlying transaction
strategy (in our case, ADO.NET transactions). Please note that the example above does not handle any excep-
tions.

Also note that you may call NHi ber nat eHel per . Get Curr ent Sessi on() ; asmany times asyou like, you will al-
ways get the current | Sessi on of this HTTP request. Y ou have to make sure the | Sessi on is closed after your
unit-of-work completes, either in Appl i cati on_EndRequest event handler in your application class, or with a
MVC action filter, or in a Ht t pModul e before the HTTP response is sent. The nice side effect of the latter is
easy lazy initialization: the | Sessi on is still open when the view is rendered, so NHibernate can load uninitial-
ized objects while you navigate the graph.

NHibernate has various methods that can be used to retrieve objects from the database. Nowadays the most
standard way isusing Ling:

usi ng(var tx = session. Begi nTransaction())

{
var femal es = session
. Query<Cat >()
.Wiere(c => c.Sex == 'F")
. ToList();
foreach (var cat in females)
{
Consol e. Qut . WiteLine("Female Cat: " + cat.Nane);
}
tx. Commit();
}

If you use an older NHibernate, you may have to import the NHi ber nat e. Li ng hamespace.

NHibernate 5.1 5

Quick-start with 11S and Microsoft SQL Server

NHibernate also offers an object-oriented query by criteria API that can be used to formulate type-safe queries,
the Hibernate Query Language (HQL), which is an easy to learn and powerful object-oriented extension to
SQL, aswell as astrongly-typed LINQ API which translates internally to HQL . NHibernate of course uses Db-

Conmands and parameter binding for all SQL communication with the database. Y ou may also use NHibernate's
direct SQL query feature or get aplain ADO.NET connection from an | Sessi on in rare cases.

Since NHibernate 5.0, the session and its queries 10 bound methods have async counterparts. Each call to an
async method must be awaited before further interacting with the session or its queries.

1.5. Finally

We only scratched the surface of NHibernate in this small tutorial. Please note that we don't include any
ASP.NET specific code in our examples. You have to create an ASP.NET page yourself and insert the
NHibernate code as you seefit.

Keep in mind that NHibernate, as a data access layer, is tightly integrated into your application. Usually, all
other layers depend on the persistence mechanism. Make sure you understand the implications of this design.

NHibernate 5.1 6

Chapter 2. Architecture

2.1. Overview

A (very) high-level view of the NHibernate architecture:

Application

NHibernate
T T

App.config

mappings

e

This diagram shows NHibernate using the database and configuration data to provide persistence services (and
persistent objects) to the application.

We would like to show a more detailed view of the runtime architecture. Unfortunately, NHibernate is flexible
and supports several approaches. We will show the two extremes. The "lite" architecture has the application
provide its own ADO.NET connections and manage its own transactions. This approach uses a minimal subset
of NHibernate's APIs:

NHibernate 5.1 7

Architecture

Application

Session
Factory

Session

Data Base

The "full cream" architecture abstracts the application away from the underlying ADO.NET APIs and lets
NHibernate take care of the details.

Transient Objects

Application

Transaction
Transaction Connection
Factory Provider

T ——

Here are some definitions of the objectsin the diagrams:

| SessionFactory (NHi ber nat e. | Sessi onFact ory)

A threadsafe (immutable) cache of compiled mappings for a single database. A factory for | Sessi on and a
client of | Connecti onProvi der. Might hold an optional (second-level) cache of data that is reusable

NHibernate 5.1 8

Architecture

between transactions, at a process- or cluster-level.

|Session (NHi ber nat e. | Sessi on)
A single-threaded, short-lived object representing a conversation between the application and the persistent
store. Wraps an ADO.NET connection. Factory for | Transact i on. Holds a mandatory (first-level) cache of
persistent objects, used when navigating the object graph or looking up objects by identifier.

Persistent Objects and Collections
Short-lived, single threaded objects containing persistent state and business function. These might be ordin-
ary POCOs, the only special thing about them is that they are currently associated with (exactly one) | Ses-
si on. As soon as the Sessi on is closed, they will be detached and free to use in any application layer (e.g.
directly as datatransfer objects to and from presentation).

Transient Objects and Collections
Instances of persistent classes that are not currently associated with a | Sessi on. They may have been in-
stantiated by the application and not (yet) persisted or they may have been instantiated by a closed | Ses-

si on.

I Transaction (NHi ber nat e. | Transact i on)
(Optional) A single-threaded, short-lived object used by the application to specify atomic units of work.
Abstracts application from underlying ADO.NET transaction. An | Sessi on might span several | Tr ansac-
ti onsin some cases. Transaction scopes may be used instead.

| ConnectionProvider (NHi ber nat e. Connect i on. | Connect i onPr ovi der)
(Optional) A factory for ADO.NET connections and commands. Abstracts application from the concrete
vendor-specific implementations of DbConnect i on and DbConmand. Not exposed to application, but can be
extended/implemented by the developer.

IDriver (NHi bernate. Driver. | Driver)
(Optional) An interface encapsulating differences between ADO.NET providers, such as parameter naming
conventions and supported ADO.NET features.

I TransactionFactory (NHi ber nat e. Transacti on. | Transact i onFact ory)
(Optional) A factory for | Transacti on instances. Not exposed to the application, but can be extended/
implemented by the devel oper.

Given a"lite" architecture, the application bypasses the | Tr ansact i on/I Tr ansact i onFact ory and/or | Connec-
ti onProvi der APIsto talk to ADO.NET directly.

2.2. Instance states

An instance of a persistent classes may be in one of three different states, which are defined with respect to a
persistence context. The NHibernate | Sessi on object is the persistence context:

transient
The instance is not, and has never been associated with any persistence context. It has no persistent identity
(primary key value).

persistent
The instance is currently associated with a persistence context. It has a persistent identity (primary key
value) and, perhaps, a corresponding row in the database. For a particular persistence context, NHibernate
guarantees that persistent identity is equivalent to CLR identity (in-memory location of the object).

NHibernate 5.1 9

Architecture

detached
The instance was once associated with a persistence context, but that context was closed, or the instance
was serialized to another process. It has a persistent identity and, perhaps, a corresponding row in the data-
base. For detached instances, NHibernate makes no guarantees about the relationship between persistent
identity and CLR identity.

2.3. Contextual Sessions

Most applications using NHibernate need some form of "contextual" sessions, where a given session isin effect
throughout the scope of a given context. However, across applications the definition of what constitutes a con-
text istypically different; and different contexts define different scopes to the notion of current.

Starting with version 1.2, NHibernate added the | Sessi onFact ory. Get Current Sessi on() method. The pro-
cessing behind 1 Sessi onFactory. Get Current Session() is pluggable. An extension interface (NHi ber n-
at e. Cont ext . | Current Sessi onCont ext) and a new configuration parameter (cur-
rent _sessi on_cont ext _cl ass) have been added to allow pluggability of the scope and context of defining cur-
rent sessions.

See the APl documentation for the NHi ber nat e. Cont ext . | Cur r ent Sessi onCont ext interface for adetailed dis-
cussion of its contract. It defines a single method, cur rent Sessi on(), by which the implementation is respons-
ible for tracking the current contextual session. Out-of-the-box, NHibernate comes with several implementa-
tions of thisinterface:

* NHi ber nat e. Cont ext . AsyncLocal Sessi onCont ext - current sessions are tracked by current asynchronous
flow. You are responsible to bind and unbind an | Sessi on instance with static methods of class current -
Sessi onCont ext . Binding operations from inner flows will not be propagated to outer or siblings flows.
Added in NHibernate 5.0.

e NHi bernate. Cont ext . Cal | Sessi onCont ext - current sessions are tracked by cCal | Context. You are re-
sponsible to bind and unbind an 1| Sessi on instance with static methods of class cur r ent Sessi onCont ext .

* NHi bernate. Cont ext. ThreadSt at i cSessi onCont ext - current session is stored in a thread-static variable.
This context supports multiple session factory only since NHibernate v5. You are responsible to bind and
unbind an | Sessi on instance with static methods of class cur r ent Sessi onCont ext .

* NHi ber nat e. Cont ext . WebSessi onCont ext - stores the current session in Ht t pCont ext . YOuU are responsible
to bind and unbind an I Sessi on instance with static methods of class cur r ent Sessi onCont ext .

* NHi ber nat e. Cont ext . Wef Oper at i onSessi onCont ext - current sessions are tracked by WCF operat i on-
Cont ext . You need to register the Wt St at eExt ensi on extension in WCF. Y ou are responsible to bind and
unbind an | Sessi on instance with static methods of class cur r ent Sessi onCont ext .

e NHi ber nat e. Cont ext . ManagedWebSessi onCont ext - current sessions are tracked by Htt pCont ext. Re-
moved in NHibernate 4.0 - NHi ber nat e. Cont ext . WebSessi onCont ext should be used instead. You are re-
sponsible to bind and unbind an | Sessi on instance with static methods on this class, it never opens, flushes,
or closes an | Sessi on itself.

The current _session_context cl ass configuration parameter defines which NHi ber n-
at e. Cont ext . | Current Sessi onCont ext implementation should be used. Typically, the value of this parameter
would just name the implementation class to use (including the assembly name); for the out-of-the-box imple-
mentations, however, there are corresponding short names. async_l ocal , call, thread_static, web and
wcf _oper at i on, respectively.

NHibernate 5.1 10

Chapter 3. ISessionFactory Configuration

Because NHibernate is designed to operate in many different environments, there are alarge number of config-
uration parameters. Fortunately, most have sensible default values and NHibernate is distributed with an ex-
ample App. confi g file (found in sr c\ NHi ber nat e. Test) that shows the various options. Y ou usually only have
to put that file in your project and customize it.

3.1. Programmatic Configuration

An instance of NH ber nat e. Cf g. Confi gurati on represents an entire set of mappings of an application's .NET
types to a SQL database. The Confi gurati on isused to build an (immutable) | Sessi onFact ory. The mappings
are compiled from various XML mapping files.

You may obtain a Confi gurati on instance by instantiating it directly. Here is an example of setting up a data-
store from mappings defined in two XML configuration files:

Configuration cfg = new Configuration()
.AddFi l e("Item hbm xm ")
. AddFi | e("Bi d. hbm xm ") ;

An aternative (sometimes better) way isto let NHibernate load a mapping file from an embedded resource;

Configuration cfg = new Configuration()
. AddCl ass(typeof (NHi bernate. Auction.lten))
. AddCl ass(typeof (NHi ber nat e. Auction.Bid));

Then NHibernate will look for mapping files named NHi ber nate. Auction. |tem hbm xmi and NHi ber n-
ate. Aucti on. Bi d. hom xni embedded as resources in the assembly that the types are contained in. This ap-
proach eliminates any hardcoded filenames.

Another alternative (probably the best) way is to let NHibernate load all of the mapping files contained in an
Assembly:

Configuration cfg = new Configuration()
. AddAssenbl y("NHi ber nate. Auction");

Then NHibernate will look through the assembly for any resources that end with . hom xm . This approach
eliminates any hardcoded filenames and ensures the mapping filesin the assembly get added.

If atool like Visual Studio .NET or NAnt is used to build the assembly, then make sure that the . hbom xm files
are compiled into the assembly as Enbedded Resour ces.

A Confi guration aso specifies various optional properties:

var props = new Dictionary<string, string>();

Configuration cfg = new Configuration()
. AddCl ass(typeof (NHi ber nat e. Auction.lten))
. AddCl ass(t ypeof (NHi ber nat e. Aucti on. Bi nd))
. Set Properties(props);

A Confi gurati on isintended as a configuration-time object, to be discarded once an | Sessi onFact ory is built.

NHibernate 5.1 11

| SessionFactory Configuration

3.2. Obtaining an ISessionFactory

When al mappings have been parsed by the Conf i gur at i on, the application must obtain a factory for | Sessi on
instances. This factory isintended to be shared by all application threads:

| Sessi onFactory sessions = cfg. Buil dSessi onFactory();

However, NHibernate does allow your application to instantiate more than one | Sessi onFactory. Thisis use-
ful if you are using more than one database.

3.3. User provided ADO.NET connection

An | Sessi onFact ory may open an | Sessi on on a user-provided ADO.NET connection. This design choice
frees the application to obtain ADO.NET connections wherever it pleases:

var conn = nyApp. Get OpenConnection();
var session = sessions. OpenSessi on(conn);

/! do sone data access work

The application must be careful not to open two concurrent | Sessi ons on the same ADO.NET connection!

3.4. NHibernate provided ADO.NET connection

Alternatively, you can have the I Sessi onFact ory open connections for you. The | Sessi onFact ory must be
provided with ADO.NET connection properties in one of the following ways:

1. Pass an instance of IDictionary mapping property names to property values to Confi gura-
tion. Set Properties().

2. Include <property> elements in a configuration section in the application configuration file. The section
should be named hibernate-configuration and its handler set to NHibern-
ate. Cfg. ConfigurationSecti onHandl er. The XML namespace of the section should be set to
ur n: nhi bernat e-confi guration-2. 2.

3. Include <property> elementsin hi ber nat e. cf g. xn (discussed later).

If you take this approach, opening an | Sessi on isassimple as:

| Sessi on session = sessions. OpenSession(); // open a new Session
/!l do sone data access work, an ADO. NET connection will be used on denmand

All NHibernate property names and semantics are defined on the class NHi ber nat e. Cf g. Envi r onnent . We will
now describe the most important settings for ADO.NET connection configuration.

NHibernate will obtain (and pool) connections using an ADO.NET data provider if you set the following prop-
erties:

Table 3.1. NHibernate ADO.NET Properties

Property hame Purpose
connect i on. provi der The type of a custom | Connecti onProvi der imple-
mentation.

NHibernate 5.1 12

| SessionFactory Configuration

Property name

connection. driver_cl ass

Purpose

€g. full.cl assname. of . Connect i onProvi der if the
Provider is built into NHibernate, or
full.classnane. of. Connecti onProvi der, as-
senbl y if using an implementation of | Connecti on-
Provi der not included in NHibernate. The default is
NH ber n-

at e. Connection. Dri ver Connecti onProvi der.

The type of a custom |1 Driver, if using Dri ver Con-
necti onProvi der.

€g. ful | . cl assnane. of . Dri ver if the Driver is built
into NHibernate, or full.classnane. of. Dri ver,
assenbl y if using an implementation of IDriver not
included in NHibernate.

This is usually not needed, most of the time the di a-
lect will take care of setting the I1Driver using a
sensible default. See the APl documentation of the
specific dialect for the defaults.

connection. connection_string

Connection string to use to obtain the connection.

connecti on. connection_string_name

connection.isolation

connection. rel ease_node

The name of the connection string (defined in
<connecti onSt ri ngs> configuration file element) to
use to obtain the connection.

Set the ADO.NET transaction isolation level. Check
System Dat a. | sol ati onLevel for meaningful values
and the database's documentation to ensure that level
is supported.

€g. Chaos | ReadConmi tted | ReadUnconmi tted | Re-
peat abl eRead | Seri al i zabl e | Unspeci fi ed

Specify when NHibernate should release ADO.NET
connections. See Section 11.7, “Connection Release
Modes".

€g. aut o (default) | on_cl ose |after _transaction

Note that for | Sessi ons obtained through | Sessi on-
Fact ory. Get Current Sessi on, the 1 current Sessi on-
Cont ext implementation configured for use may con-
trol the connection release mode for those | Sessi ons.
See Section 2.3, “ Contextual Sessions”.

prepare_sql

conmand_t i meout

Specify to prepare DbCommandS generated by
NHibernate. Defaultstof al se.

eg.true |fal se

Specify the default timeout in seconds of DoConmands
generated by NHibernate. Negative values disable it.

NHibernate 5.1

13

| SessionFactory Configuration

Property name

Purpose

€g. 30

adonet . bat ch_si ze

order _inserts

order _updat es

Specify the batch size to use when batching update
statements. Setting this to O (the default) disables the
functionality. See Section 20.6, “Batch updates’.

€g. 20

Enable ordering of insert statements for the purpose
of more efficient batching. Defaults to t rue if batch-
ing isenabled, f al se otherwise.

€g.true |fal se

Enable ordering of update statements for the purpose
of more efficient batching. Defaults to t r ue if batch-
ingisenabled, f al se otherwise.

€g.true |fal se

adonet . bat ch_versi oned_dat a

adonet . factory_cl ass

adonet . wap_result_sets

If batching is enabled, specify that versioned data can
also be batched. Requires a dialect which batcher cor-
rectly returns rows count. Defaultsto f al se.

€g.true |fal se

The class name of a | Bat cher Fact ory implementa-
tion.

This is usually not needed, most of the time the
driver will take care of setting the | Bat cher Fact ory
using a sensible default according to the database
capabilities.

€J. cl assnane. of . Bat cher Factory, assenbly

Some database vendor data reader implementation
have inefficient columnName-to-columnlndex resolu-
tion. Enabling this setting allows to wrap them in a
data reader that will cache those resolutions. Defaults
tofal se.

€g.true |fal se

Thisis an example of how to specify the database connection propertiesinside aweb. confi g:

<?xm version="1.0" encodi ng="utf-8" ?>
<configuration>
<confi gSecti ons>
<section nanme="hi bernate-configuration"
type="NHi ber nat e. Cf g. Confi gurati onSecti onHandl er, NH bernate" />
</ confi gSections>

<hi ber nat e- confi gurati on xm ns="urn: nhi ber nat e-confi guration-2.2">
<sessi on-factory>
<property nane="di al ect">NHi bernate. Di al ect. MsSql 2012Di al ect </ property>

NHibernate 5.1

14

| SessionFactory Configuration

<property nane="connection.connection_string">
Server=(local);initial catal og=theDb;|ntegrated Security=SSPI
</ property>
<property nane="connection.i sol ati on">ReadConmi tted</ property>
</ sessi on-factory>
</ hi ber nat e- confi gurati on>

<l-- other app specific config follows -->
</ confi guration>

NHibernate relies on the ADO.NET data provider implementation of connection pooling.

Y ou may define your own plug-in strategy for obtaining ADO.NET connections by implementing the interface
NHi ber nat e. Connect i on. | Connect i onProvi der . You may select a custom implementation by setting connec-
tion. provider.

3.5. Optional configuration properties

There are anumber of other properties that control the behaviour of NHibernate at runtime. All are optional and
have reasonable default values.

Some properties are system-level properties. They can only be set manually by setting static properties of
NHi ber nat e. Cf g. Envi ronnent class or be defined in the <hi ber nat e- confi gur ati on> section of the applica-
tion configuration file. These properties cannot be set using Confi gurati on. Set Properties or the hi bern-
ate. cfg. xmi configuration file.

Table 3.2. NHibernate Configuration Properties

Property name Purpose

di al ect The class name of a NHibernate Di al ect - enables
certain platform dependent features. See Sec-
tion 3.5.1, “SQL Dialects’.

€g.full.classnane. of. Di al ect, assenbly

def aul t _catal og Qualify unqualified table names with the given cata-
log name in generated SQL.

€g. CATALOG_NAMVE

def aul t _schema Qualify unqualified table names with the given
schema/table-space in generated SQL .

€g. SCHEMA_NANE

max_f et ch_depth Set a maximum "depth" for the outer join fetch tree
for single-ended associations (one-to-one, many-
to-one). A o disables default outer join fetching.

eg. recommended values between 0 and 3

use_refl ection_optini zer Enables use of a runtime-generated class to set or get
properties of an entity or component instead of using
runtime reflection. This is a system-level property.
The use of the reflection optimizer inflicts a certain

NHibernate 5.1 15

| SessionFactory Configuration

Property name

Purpose

startup cost on the application but should lead to bet-
ter performance in the long run. Defaultsto t r ue.

You can not set this property in hi ber nate. cf g. xni ,
but only in <hi ber nat e- confi gurati on> section of
the application configuration file or by code by set-
ting NH ber n-
ate. Cf g. Envi ronment . UseRef | ecti onOpti ni zer be-
fore creating any NHi bernate. Cf g. Confi guration
instance.

€g.true |fal se

byt ecode. provi der

cache.

use_second_| evel _cache

Specifies the bytecode provider to use to optimize the
use of reflection in NHibernate. Thisis a system-level
property. Use nul | to disable the optimization com-
pletely, | cg to use built-in lightweight code genera-
tion, or the class name of a custom | Byt ecodePr o-
vi der implementation. Defaultsto cg.

You can not set this property in hi ber nate. cfg. xni ,
but only in <hi ber nat e- confi guration> section of
the application configuration file or by code by set-
ting NH ber n-
ate. Cf g. Envi ronment . Byt ecodePr ovi der before
creating any NHi bernate. Cfg. Configuration in-
stance.

€g. null | Icg | cl assnane. of . Byt ecodePr ovi der,
assenbl y

Enable the second level cache. Requires specifying a
cache. provi der _cl ass. See Chapter 26, NHibern-
ate.Caches. Defaultstof al se.

€g.true |fal se

cache.

cache.

cache.

cache.

provi der _cl ass

use_m ni mal _puts

use_query_cache

query_cache_factory

The class name of al CachePr ovi der implementation.

€J. cl assnane. of . CacheProvi der, assenbly

Optimize second-level cache operation to minimize
writes, at the cost of more frequent reads (useful for
clustered caches). Defaultstof al se.

€g.true |fal se

Enable the query cache, individual queries still have
to be set cacheable. Defaultstof al se.

€g.true |fal se

The class name of a custom | Quer yCacheFact ory im-
plementation. Defaults to the built-in stand-
ar dQueryCacheFactory.

NHibernate 5.1

16

| SessionFactory Configuration

Property name

Purpose

€J. cl assnane. of . QueryCacheFactory, assenbly

cache. regi on_prefix

A prefix to use for second-level cache region names.

€g. prefix

cache. defaul t _expiration

query. substitutions

query. default _cast_| ength

The default expiration delay in seconds for cached
entries, for providers supporting this setting.

€g. 300

Mapping from tokens in NHibernate queries to SQL
tokens (tokens might be function or literal names, for
example).

€g. hgl Li teral =SQL_LI TERAL, hgl Func-
ti on=SQLFUNC

Set the default length used in casting when the target
type is length bound and does not specify it. Defaults
to 4000, automatically trimmed down according to
dialect type registration.

eg. 255

query. defaul t _cast_precision

Set the default precision used in casting when the tar-
get type is decimal and does not specify it. Defaultsto
28, automatically trimmed down according to dialect
type registration.

eg. 19

query. default _cast_scal e

query. startup_check

query. factory_cl ass

query. ling_provider_class

Set the default scale used in casting when the target
typeis decimal and does not specify it. Defaultsto 10,
automatically trimmed down according to dialect type
registration.

€g.5

Should named queries be checked during startup (the
default is enabled).

€g.true |fal se

The class name of a custom | Quer yTr ans| at or Fact -
ory implementation (HQL query parser factory). De-
faultsto the built-in ASTQuer yTr ansl at or Fact ory.

€g. classnane. of . QueryTransl ator Factory, as-
senbl y

The class name of a custom | NnQuer yProvi der im-
plementation (LINQ provider). Defaults to the built-
in Def aul t Quer yPr ovi der .

€g. cl assnane. of . Li ngProvi der, assenbly

NHibernate 5.1

17

| SessionFactory Configuration

Property name

query. query_nodel _rewriter_factory

i ngt ohgl . generatorsregistry

Purpose

The class name of a custom | Quer yModel Rewri t er -
Fact ory implementation (LINQ query model rewriter
factory). Defaultsto nul I (no rewriter).

€g. cl assnane. of . Quer yMbdel Rewri t er Fact ory,
assenbl y

The class name of a custom I Li ngToHql Gener at or -
sRegi stry implementation. Defaults to the built-in
Def aul t Li nqToHgl Gener at or sRegi stry. See Sec-
tion 17.8.2, “Adding a custom generator”.

€g. classnane. of. Li nqToHgl Gener at or sRegi stry,
assenbl y

sql _exception_converter

The class name of a custom | SQLExcept i onConvert -
er implementation. Defaults to Di a-
| ect. Bui | dSQLExcepti onConverter().

€g. classnane. of . SQLExcepti onConverter, as-
senbl y

show_sql

format _sql

Write all SQL statements to console. Defaults to
fal se.

€g.true |fal se

Log formatted SQL. Defaultstof al se.

eg.true |fal se

use_sql _conment s

Generate SQL with comments. Defaultstof al se.

eg.true |fal se

hbn2dd! . aut o

hbnRdd! . keywor ds

Automatically export schema DDL to the database
when the | Sessi onFact ory is created. With cr eat e-
dr op, the database schema will be dropped when the
| Sessi onFact ory is closed explicitly.

€g.create |create-drop

Automatically import reserved/ keywords from the
database when the | Sessi onFact ory is created.

none : disable any operation regarding RDBMS
KeyWords (the default).

keywords : imports al RDBMS KeyWords where the
Di al ect can provide the implementation of | Dat a-
BaseSchena.

auto-quote : imports al RDBMS KeyWords and
auto-quote all table-names/column-names.

€g. none | keywor ds | aut o- quot e

NHibernate 5.1

18

| SessionFactory Configuration

Property name

use_proxy_val i dat or

Purpose

Enables or disables validation of interfaces or classes
specified as proxies. Enabled by default.

eg.true |fal se

proxyfactory. factory_cl ass

col l ectiontype.factory_cl ass

transaction. factory_cl ass

transaction. use_connecti on_on_system prepare

transacti on. system conpl eti on_| ock_ti meout

The class name of a custom | Pr oxyFact or yFact ory
implementation. Defaults to the built-in Def aul t -
Pr oxyFact oryFact ory.

€g. cl assnane. of . ProxyFact oryFactory, assenbly

The class name of a custom 1 Col | ecti onTypeFact -
ory implementation. Defaults to the built-in Def aul t -
Col | ecti onTypeFactory.

€g. classnane. of. Col | ecti onTypeFactory, as-
senbl y

The class name of a custom | Transact i onFact ory
implementation. Defaults to the built-in AdoNet W t h-
Syst enlr ansacti onFactory.

€g. cl assnare. of . Transacti onFactory, assenbly

When a system transaction is being prepared, is using
connection during this process enabled?

Default is true, for supporting Fl ushMbde. Commi t
with transaction factories supporting system transac-
tions. But this requires enlisting additional connec-
tions, retaining disposed sessions and their connec-
tions until transaction end, and may trigger undesired
transaction promotions to distributed.

Set to fal se for disabling using connections from
system transaction preparation, while still benefiting
from Fl ushMbde. Aut o ON querying.

See Section 11.8,
(System.Transactions)”.

“Transaction scopes

€g.true |fal se

Timeout duration in milliseconds for the system
transaction completion lock.

When a system transaction completes, it may have its
completion events running on concurrent threads,
after scope disposal. This occurs when the transaction
is distributed. This notably concerns | Sessi onl npl e-
ment or . Aft er Transact i onConpl et i on(bool

I Transact i on) . NHibernate protects the session from
being concurrently used by the code following the
scope disposal with a lock. To prevent any applica-
tion freeze, this lock has a default timeout of five

NHibernate 5.1

19

| SessionFactory Configuration

Property name

defaul t _flush_node

default _batch_fetch_size

Purpose

seconds. If the application appears to require longer
(1) running transaction completion events, this setting
alowsto raise thistimeout. - 1 disables the timeout.

€g. 10000

The default FI ushMbde, Aut o when not specified. See
Section 9.6, “Flush”.

€g. Manual |Commit |Auto | Al ways

The default batch fetch size to use when lazily load-
ing an entity or collection. Defaults to 1. See Sec-
tion 20.1.5, “Using batch fetching”.

€g. 20

current _session_context _cl ass

i d.optimzer.pool ed.prefer_lo

The class name of an | Current Sessi onCont ext im-
plementation. See Section 2.3, “ Contextual Sessions’.

€g. classnane. of . Current Sessi onCont ext, as-
senbl y

When using an enhanced id generator and pooled op-
timizers (see Section 5.1.5.8, “Enhanced identifier
generators’), prefer interpreting the database value as
the lower (10) boundary. The default is to interpret it
as the high boundary.

€g.true |fal se

generate_statistics

track_session_id

sql _types. keep_datetinme

Enable statistics collection within | Sessi onFact -
ory. Statistics property. Defaultstof al se.

eg.true |fal se

Set whether the session id should be tracked in logs
or not. When tr ue, each session will have an unique
@i d that can be retrieved with | Sessi onl npl enent -
or.Sessionld, otherwise I Sessionl npl enent-
or . Sessi onl d will be aui d. Enpt y.

Session id is used for logging purpose and can also be
retrieved on the datic property NHi bern-
ate. | npl . Sessi onl dLoggi ngCont ext . Sessi onl d,
when tracking is enabled.

Disabling tracking by setting track_session_id to
f al se increases performances. Default ist r ue.

eg.true |fal se

Since NHibernate v5.0 and if the dialect supports it,
DbType. DateTime2 is used instead of Db-
Type. DateTi me. This may be disabled by setting
sql _types. keep_datetime to true. Defaults to

NHibernate 5.1

20

| SessionFactory Configuration

Property name

oracl e.use_n_prefixed_types_for_uni code

odbc. explicit_datetinme_scale

Purpose

fal se.

€g.true |fal se

Oracle has adual Unicode support model.

Either the whole database use an Unicode encoding,
and then al string types will be Unicode. In such
case, Unicode strings should be mapped to non N pre-
fixed types, such as Var char 2. Thisis the default.

Or N prefixed types such as Nvar char 2 are to be used
for Unicode strings, the others type are using a non
Unicode encoding. In such case this setting needs to
besettotrue.

See Implementing a Unicode Solution in the Database
[https://docs.oracle.com/cd/B19306_01/server.102/b1
4225/ch6unicode.ntm#CACHCAHF]. This setting
applies only to Oracle dialects and ODP.Net managed
or unmanaged driver.

€g.true |fal se

This may need to be set to 3 if you are using the adb-
cDriver with MS SQL Server 2008+.

Thisisintended to work around issues like:

Syst em Dat a. Gdbc. CdbcException :

ERROR [22008]

[Mcrosoft][SQ Server Native Cient 11.0]
Datetinme field overflow Fractional second
preci sion exceeds the scale specified

in the paraneter binding.

eg. 3

nhi ber nat e-1 ogger

The class name of an I Logger Fact ory implementa
tion. It allows using another logger than log4net.

The default is not defined, which causes NHibernate
to search for logdnet assembly. If this search suc-
ceeds, NHibernate will log with logdnet. Otherwise,
itsinternal logging will be disabled.

This is a very special system-level property. It can
only be set through an appSetting
[https.//docs.microsoft.com/en-us/dotnet/framework/c
onfigure-apps/file-schema/appsettings/] named
nhi ber nat e- | ogger in the application configuration
file. It cannot be set neither with NHi bern-
ate. Cfg. Envi ronnent class, nor be defined in the
<hi ber nat e- confi gurati on> section of the applica-
tion configuration file, nor supplied by using Confi g-

NHibernate 5.1

21

https://docs.oracle.com/cd/B19306_01/server.102/b14225/ch6unicode.htm#CACHCAHF
https://docs.microsoft.com/en-us/dotnet/framework/configure-apps/file-schema/appsettings/

| SessionFactory Configuration

Property name

Purpose

uration. Set Properties, nor set in the hibern-
ate. cfg. xn configuration file.

€J. cl assnane. of . Logger Factory, assenbly

3.5.1. SQL Dialects

You should always set the di al ect property to the correct NHi ber nat e. Di al ect . Di al ect subclass for your
database. This is not strictly essential unless you wish to use nati ve Or sequence primary key generation or
pessimistic locking (with, eg. | Sessi on. Lock() Or | Query. Set LockMode()). However, if you specify a diaect,
NHibernate will use sensible defaults for some of the other properties listed above, saving you the effort of spe-
cifying them manually.

Table 3.3. NHibernate SQL Dialects (di al ect)

RDBMS Dialect Remarks

DB2 NHi ber nat e. Di al ect. DB2Di al ect

DB2 for iSeries NHi ber nate. Di al ect. DB2400Di al ect

(0S/400)

Firebird NHi ber nat e. Di al ect . Fi rebi rdDi al ect Set driver _class to NHi ber n-
ate.Driver.FirebirddientDriver for
Firebird ADO.NET provider 2.0.

Informix NHi bernate. Di al ect. | nform xDi al ect

Informix 9.40 NHi ber n-

Informix 10.00

Ingres
Ingres 9

Microsoft SQL
Server 7

Microsoft SQL
Server 2000

Microsoft SQL
Server 2005

Microsoft SQL
Server 2008

Microsoft SQL
Azure Server
2008

ate. D al ect. I nform xDi al ect 0940

NHi ber n-
ate. Di al ect. I nfornm xDi al ect 1000

NH ber nate. Di al ect. | ngresDi al ect
NH ber nate. Di al ect. | ngres9Di al ect

NH ber nate. Di al ect. MsSql 7Di al ect

NH ber nat e. Di al ect. MsSgl 2000Di al ect

NH ber nat e. Di al ect. MsSql 2005Di al ect

NH ber nat e. Di al ect. MsSgl 2008Di al ect

NHi ber n-
ate. Di al ect. MsSql Azur e2008Di al ect

Microsoft SQL

NH ber nat e. Di al ect. MsSqgl 2012Di al ect

NHibernate 5.1

22

| SessionFactory Configuration

RDBM S Dialect Remarks
Server 2012
Microsoft SQL NHi bernate. Di al ect. MsSql CeDi al ect
Server Compact
Edition
Microsoft SQL NHi bernat e. Di al ect. MsSql Ce40Di al ect
Server Compact
Edition 4.0
MySQL 30r4 NHi bernate. Di al ect. \ySQLDi al ect
MySQL 5 NHi ber nat e. Di al ect. MySQL5DI al ect
MySQL 5 Inno NHi bern-
DB ate. Di al ect. MySQL5I1 nnoDBDi al ect
MySQL 5.5 NHi ber nat e. Di al ect. MySQL55Di al ect
MySQL 5.5 NHi bern-
Inno DB ate. Di al ect. MySQL55I nnoDBDi al ect
Oracle NHi ber nat e. Di al ect. Oracl e8i Di al ect
Oracle 9i NHi ber nat e. Di al ect. Oracl e9i Di al ect
Oracle 10g, Or- NHi bernate. Di al ect. Oracl e10gDi al ect
acle1lg
Oracle 12¢ NHi ber nat e. Di al ect. Oracl e12cDi al ect
PostgreSQL NHi ber nat e. Di al ect. Post gr eSQLDi al ect
PostgreSQL NHi ber nat e. Di al ect . Post gr eSQLDi al ect
PostgreSQL 8.1 NHi ber n- This dialect supports FOR UPDATE NOMAI T
ate. Di al ect. Post gr eSQL81Di al ect available in PostgreSQL 8.1.
PostgreSQL 8.2 NHi ber n- This dialect supports | F EXI STS keyword in
ate. Di al ect. Post greSQL82Di al ect DROP TABLE and DROP SEQUENCE availablein
PostgreSQL 8.2.
PostgreSQL 8.3 NHi ber n- This dialect supports XM type.
ate. Di al ect. Post greSQ.83Di al ect
SQLite NHi ber nat e. Di al ect. SQLi t eDi al ect Set driver_cl ass to NH ber n-
ate.Driver.SQite20Driver for Sys
tem.Data.SQL.ite provider for .NET 2.0.
Due to the behavior of System.Data.SQL.ite
[https.//system.data.sqlite.org/index.html/tkt
view/
44a0955ea344a777ffdbcc077831eladc8b77
a36] with DateTi ne, consider using Dat e-
Ti meFor mat St ri ng=yyyy- M\ dd
HH mm ss. FFFFFFF; in the SQLite connec-
tion string for preventing undesired time
shiftswith its default configuration.
NHibernate 5.1 23

https://system.data.sqlite.org/index.html/tktview/44a0955ea344a777ffdbcc077831e1adc8b77a36

| SessionFactory Configuration

RDBMS Dialect Remarks
Sybase Adapt- NHi bernat e. Di al ect. SybaseASA9Di al ect

ive Server Any-

where 9

Sybase Adapt- NHi bernat e. Di al ect. SybaseASE15Di al ect
ive Server En-
terprise 15

Sybase SQL NHi ber n-
Anywhere 10 at e. Di al ect. SybaseSQLAnywher e10Di al ec
t

Sybase SQL NHi ber n-
Anywhere 11 ate. Di al ect. SybaseSQLAnywher e11Di al ec
t

Sybase SQL | NHi ber n-
Anywhere 12 ate. Di al ect. SybaseSQ.Anywher e12Di al ec
t

Additional dialects may be available in the NHibernate.Dialect namespace.

3.5.2. Outer Join Fetching

If your database supports ANSI or Oracle style outer joins, outer join fetching might increase performance by
[imiting the number of round trips to and from the database (at the cost of possibly more work performed by the
database itself). Outer join fetching allows a graph of objects connected by many-to-one, one-to-many or one-
to-one associations to be retrieved in asingle SQL SELECT.

By default, the fetched graph when loading an objects ends at leaf objects, collections, objects with proxies, or
where circularities occur.

For a particular association, fetching may be configured (and the default behaviour overridden) by setting the
f et ch attribute in the XML mapping.

Outer join fetching may be disabled globally by setting the property max_f et ch_dept h t0 0. A setting of 1 or
higher enables outer join fetching for one-to-one and many-to-one associations which have been mapped with
fetch="join".

See Section 20.1, “Fetching strategies’” for more information.
In NHibernate 1.0, out er - j oi n attribute could be used to achieve a similar effect. This attribute is now deprec-

ated in favor of f et ch.

3.5.3. Custom | CacheProvi der
You may integrate a process-level (or clustered) second-level cache system by implementing the interface

NHi ber nat e. Cache. | CacheProvider. You may select the custom implementation by setting
cache. provi der _cl ass. See the Section 20.2, “The Second Level Cache” for more details.

3.5.4. Query Language Substitution

NHibernate 5.1 24

| SessionFactory Configuration

Y ou may define new NHibernate query tokens using query. subst i t uti ons. For example:

query.substitutions true=1, false=0

would cause the tokenst rue and f al se to be trandated to integer literals in the generated SQL.

query. substitutions toLowercase=LONER

would allow you to rename the SQL LOWER function.

3.6. Logging

NHibernate logs various events using Apache log4net.

You may download log4net from https://logging.apache.org/logdnet/, or install it with NuGet. To use log4net
you will need al og4net configuration section in the application configuration file. An example of the configur-
ation section is distributed with NHibernate in the sr c/ NHi ber nat e. Test project.

We strongly recommend that you familiarize yourself with NHibernate's log messages. A lot of work has been
put into making the NHibernate log as detailed as possible, without making it unreadable. It is an essential
troubleshooting device. Also don't forget to enable SQL logging as described above (show _sql), it is your first
step when looking for performance problems.

3.7. Implementing an | Nami ngSt r at egy

The interface NHi ber nat e. Cf g. | Nari ngSt r at egy allows you to specify a "naming standard” for database ob-
jects and schema elements.

Y ou may provide rules for automatically generating database identifiers from .NET identifiers or for processing
"logical" column and table names given in the mapping file into "physical” table and column names. This fea-
ture helps reduce the verbosity of the mapping document, eliminating repetitive noise (TBL_ prefixes, for ex-
ample). The default strategy used by NHibernate is quite minimal.

You may specify a different strategy by calling Confi gurati on. Set Nami ngStrat egy() before adding map-
pings:

| Sessi onFactory sf = new Confi guration()
. Set Nami ngSt r at egy(| npr ovedNam ngStrat egy. | nst ance)
.AddFi |l e("1tem hbm xm ")
. AddFi | e("Bi d. hbm xm ")
. Bui | dSessi onFactory();

NH ber nat e. Cf g. | npr ovedNani ngSt r at egy IS a built-in strategy that might be a useful starting point for some
applications.

3.8. XML Configuration File

An alternative approach is to specify a full configuration in a file named hi ber nat e. cf g. xm . This file can be
used as areplacement for the <hi ber nat e- conf i gur at i on> sections of the application configuration file.

The XML configuration file is by default expected to be in your application directory. Here is an example:

NHibernate 5.1 25

https://logging.apache.org/log4net/

| SessionFactory Configuration

<?xm version='"1.0" encodi ng='utf-8" ?>
<hi ber nat e- confi gurati on xm ns="ur n: nhi ber nat e-confi gurati on-2.2">

<I'-- an | Sessi onFactory instance -->
<sessi on-factory>

<I-- properties -->
<property nanme="connection.connection_string">
Server =l ocal host;initial catal og=nhi bernate; User |d=; Password=
</ property>
<property name="show_sql ">fal se</property>
<property nane="di al ect">NHi bernate. Di al ect. MsSql 2012Di al ect </ property>

<I-- mapping files -->
<mappi ng resour ce="NHi bernate. Aucti on.ltem hbm xm " assenbl y="NH ber nat e. Aucti on" />
<mappi ng resource="NHi bernat e. Aucti on. Bi d. hbom xm " assenbl y="NHi ber nat e. Aucti on" />

</ sessi on-factory>

</ hi ber nat e- conf i gurati on>

Configuring NHibernate is then as simple as

| Sessi onFactory sf = new Configuration().Configure().Buil dSessi onFactory();

Y ou can pick adifferent XML configuration file using

| Sessi onFactory sf = new Configuration()
. Configure("/path/to/config.cfg.xm")
. Bui | dSessi onFactory();

NHibernate 5.1

26

Chapter 4. Persistent Classes

Persistent classes are classes in an application that implement the entities of the business problem (e.g. Custom-
er and Order in an E-commerce application). Persistent classes have, as the name implies, transient and also
persistent instance stored in the database.

NHibernate works best if these classes follow some simple rules, aso known as the Plain Old CLR Object
(POCO) programming model.

4.1. A simple POCO example

Most .NET applications require a persistent class representing felines.

usi ng System
usi ng System Col | ecti ons. Generi c;

namespace Eg

{
public class Cat
{
long _id;
/1 identifier
public virtual long Id
{
get { return _id; }
protected set { _id = value; }
}
public virtual string Name { get; set; }
public virtual Cat Mate { get; set; }
public virtual DateTine Birthdate { get; set; }
public virtual float Weight { get; set; }
public virtual Color Color { get; set; }
public virtual |Set<Cat> Kittens { get; set; }
public virtual char Sex { get; set; }
/1 AddKitten not needed by NHi bernate
public virtual void AddKitten(Cat Kkitten)
{
kittens. Add(kitten);
}
}
}

There are four main rules to follow here:

4.1.1. Declare properties for persistent fields

cat declares properties for all the persistent fields. Many other ORM tools directly persist instance variables.
We believe it is far better to decouple this implementation detail from the persistence mechanism. NHibernate
persists properties, using their getter and setter methods.

Properties need not be declared public - NHibernate can persist a property with ani nt ernal , pr ot ect ed, pro-
tected internal Of private visibility.

As shown in the example, both automatic properties and properties with a backing field are supported.

NHibernate 5.1 27

Persistent Classes

4.1.2. Implement a default constructor

cat has an implicit default (no-argument) constructor. All persistent classes must have a default constructor
(which may be non-public) so NHibernate can instantiate them using Act i vat or . Cr eat el nst ance() .

4.1.3. Provide an identifier property (optional)

cat has a property called 1 d. This property holds the primary key column of a database table. The property
might have been called anything, and its type might have been any primitive type, stri ng Or Syst em Dat eTi re.
(If your legacy database table has composite keys, you can even use a user-defined class with properties of
these types - see the section on composite identifiers below.)

The identifier property is optional. You can leave it off and let NHibernate keep track of object identifiers in-
ternally. However, for many applicationsit is still agood (and very popular) design decision.

What's more, some functionality is available only to classes which declare an identifier property:

¢ Cascaded updates (see "Lifecycle Objects")
* | Session. SaveOr Updat e()

We recommend you declare consistently-named identifier properties on persistent classes.

4.1.4. Prefer non-sealed classes and virtual methods (optional)

A central feature of NHibernate, proxies, depends upon the persistent class being non-sealed and all its public
methods, properties and events declared as virtual. Another possibility is for the class to implement an interface
that declares all public members.

You can persist seal ed classes that do not implement an interface and don't have virtual members with
NHibernate, but you won't be able to use proxies - which will limit your options for performance tuning.

4.2. Implementing inheritance

A subclass must aso observe the first and second rules. It inheritsits identifier property from Cat .

usi ng System
namespace Eg

{
public class DonmesticCat : Cat

{
}

public virtual string Nane { get; set; }

4.3. Implementing Equal s() and Get HashCode()

You have to override the Equal s() and Get HashCode() methods if you intend to mix objects of persistent
classes(e.g.inan| Set).

This only applies if these objects are loaded in two different | Sessi ons, as NHibernate only guarantees identity
(a == b , the default implementation of Equal s()) inside a single | Sessi on!

NHibernate 5.1 28

Persistent Classes

Even if both objects a and b are the same database row (they have the same primary key value as their identifi-
er), we can't guarantee that they are the same object instance outside of a particular | Sessi on context.

The most obvious way is to implement Equal s() /Get HashCode() by comparing the identifier value of both ob-
jects. If the value is the same, both must be the same database row, they are therefore equal (if both are added
to an 1 set, we will only have one element in the | set). Unfortunately, we can't use that approach. NHibernate
will only assign identifier values to objects that are persistent, a newly created instance will not have any identi-
fier value! We recommend implementing Equal s() and Get HashCode() using Business key equality.

Business key equality means that the Equal s() method compares only the properties that form the business
key, akey that would identify our instance in the real world (anatural candidate key):

public class Cat
{

bﬁblic override bool Equal s(object other)

{

if (this == other) return true;

Cat cat = other as Cat;
if (cat == null) return false; // null or not a cat

if (Nane != cat.Nanme) return false;
if (!Birthday. Equal s(cat.Birthday)) return fal se;

return true;

}

public override int GetHashCode()
{

unchecked

{

int result;

result = Nane. Get HashCode();

result = 29 * result + Birthday. Get HashCode();
return result;

Keep in mind that our candidate key (in this case a composite of hame and birthday) has to be only valid for a
particular comparison operation (maybe even only in a single use case). We don't need the stability criteriawe
usually apply to areal primary key!

4.4. Dynamic models

Note that the following features are currently considered experimental and may change in the near future.

Persistent entities don't necessarily have to be represented as POCO classes at runtime. NHibernate also sup-
ports dynamic models (using Di cti onari es Of Di ctionarys at runtime) . With this approach, you don't write
persistent classes, only mapping files.

The following examples demonstrates the representation using Maps (Dictionary). First, in the mapping file, an
enti ty- name hasto be declared instead of a class name:

<hi ber nat e- mappi ng>

<cl ass entity-nane="Custoner" >

NHibernate 5.1 29

Persistent Classes

<id nanme="id"

type="1 ong"

colum="1D">

<gener at or cl ass="sequence"/>
</id>

<property name="nane"
col um=" NAME"
type="string"/>

<property nanme="address"
col um=" ADDRESS"
type="string"/>

<many-t o- one nanme="organi zati on"
col um=" ORGANI ZATI ON_| D"
cl ass="Organi zati on"/ >

<bag nane="orders"
i nverse="true"
| azy="fal se"
cascade="al | ">
<key col um="CUSTOVER | D'/ >
<one-to-many class="Order"/>
</ bag>

</ cl ass>

</ hi ber nat e- mappi ng>

Note that even though associations are declared using target class names, the target type of an associations may
also be a dynamic entity instead of a POCO.

At runtime we can work with Di cti onari es Of Di cti onari es:

usi ng(l Sessi on s = QOpenSession())
usi ng(l Transaction tx = s.Begi nTransaction())

{
I/l Create a custoner
var frank = new Dictionary<string, object>();
frank["nane"] = "Frank";
/1 Create an organi zation
var foobar = new Dictionary<string, object>();
f oobar["nane"] = "Foobar Inc.";
[/ Link both
frank["organi zati on"] = foobar;
/1 Save both
s. Save("Custoner", frank);
s. Save(" Organi zati on", foobar);
tx. Commit();
}

The advantages of a dynamic mapping are quick turnaround time for prototyping without the need for entity
class implementation. However, you lose compile-time type checking and will very likely deal with many ex-
ceptions at runtime. Thanks to the NHibernate mapping, the database schema can easily be normalized and
sound, allowing to add a proper domain model implementation on top later on.

4.5. Tuplizers

NHi ber nat e. Tupl e. Tupl i zer, and its sub-interfaces, are responsible for managing a particular representation

NHibernate 5.1 30

Persistent Classes

of apiece of data, given that representation’'s NHi ber nat e. Enti t yMode. If a given piece of data is thought of as
a data structure, then a tuplizer is the thing which knows how to create such a data structure and how to extract
values from and inject values into such a data structure. For example, for the POCO entity mode, the corres-
ponding tuplizer knows how create the POCO through its constructor and how to access the POCO properties
using the defined property accessors. There are two high-level types of Tuplizers, represented by the NHi ber n-
ate. Tuple.Entity. | EntityTuplizer and NHi bernate. Tupl e. Conponent . | Conponent Tupl i zer interfaces.
I EntityTuplizers are responsible for managing the above mentioned contracts in regards to entities, while
| Component Tupl i zer Sdo the same for components.

Users may also plug in their own tuplizers. Perhaps you require that a Syst em Col | ecti ons. | Di ctionary im-
plementation other than Syst em Col | ect i ons. Hasht abl e be used while in the dynamic-map entity-mode; or
perhaps you need to define a different proxy generation strategy than the one used by default. Both would be
achieved by defining a custom tuplizer implementation. Tuplizers definitions are attached to the entity or com-
ponent mapping they are meant to manage. Going back to the example of our customer entity:

<hi ber nat e- mappi ng>
<cl ass entity-nane="Custoner" >

<l--
Override the dynam c-map entity-node
tuplizer for the custoner entity

-->

<tuplizer entity-node="dynam c-map"

cl ass="Cust onVapTupl i zer I npl "/ >

<id name="id" type="long" colum="1D">
<generator class="sequence"/>
</id>

<l-- other properties -->
</ cl ass>
</ hi ber nat e- mappi ng>

public class CustomvapTuplizerlnpl : NH bernate. Tupl e. Entity. Dynam cMapEntityTupli zer
{
/1 override the Buildlnstantiator() nethod to plug in our custom nap...
protected override Ilnstantiator Buildlnstantiator(
NH ber nat e. Mappi ng. Per si st ent d ass nappi ngl nf 0)

{
return new Cust onmMapl nst anti at or (nappi ngl nf o) ;
}
private seal ed class Custom\vapl nstantiator : NH bernate. Tupl e. Dynam cMapl nst anti at or
{
/1 override the generateMap() nmethod to return our custom map...
protected override IDictionary GenerateMap()
{
return new Cust onmvap();
}
}

4.6. Lifecycle Callbacks

Optionally, a persistent class might implement the interface I Li f ecycl e which provides some callbacks that al-
low the persistent object to perform necessary initialization/cleanup after save or load and before deletion or
update.

The NHibernate | | nt er cept or offersalessintrusive aternative, however.

public interface ILifecycle

NHibernate 5.1 31

Persistent Classes

{ (1)
Li fecycl eVet o OnSave(| Session s); (2)
Li fecycl eVet o OnUpdat e(| Sessi on s); (3)
Li fecycl eVet o OnDel et e(| Sessi on s); (4)

voi d OnLoad(| Session s, object id);

(1) nSave - caled just before the object is saved or inserted

(2) OnUpdat e - called just before an object is updated (when the object is passed to | Sessi on. Updat e())
(3) OnDel et e - caled just before an object is deleted

(4) OnLoad - caled just after an object isloaded

nSave(), OnDel et e() and OnUpdat e() may be used to cascade saves and deletions of dependent objects. This
is an aternative to declaring cascaded operations in the mapping file. onLoad() may be used to initiaize transi-
ent properties of the object from its persistent state. It may not be used to load dependent objects since the
I Sessi on interface may not be invoked from inside this method. A further intended usage of onLoad(), On-
Save() and OnUpdat e() isto store areference to the current | Sessi on for later use.

Note that onUpdat e() is not called every time the object's persistent state is updated. It is called only when a
transient object is passed to | Sessi on. Updat () .

If Onsave(), OnUpdate() Or OnDel ete() return Lifecycl eVet o. Vet o, the operation is silently vetoed. If a
Cal | backExcept i on isthrown, the operation is vetoed and the exception is passed back to the application.

Note that onsave() is called after an identifier is assigned to the object, except when native key generation is
used.

4.7. IValidatable callback

If the persistent class needs to check invariants before its state is persisted, it may implement the following in-
terface:

public interface |Validatable

{
}

voi d Validate();

The object should throw aVval i dat i onFai | ur e if an invariant was violated. An instance of val i dat abl e should
not change its state from inside val i dat e() .

Unlike the callback methods of the I Li f ecycl e interface, val i dat e() might be called at unpredictable times.
The application should not rely upon callsto val i dat e() for business functionality.

NHibernate 5.1 32

Chapter 5. Basic O/R Mapping

5.1. Mapping declaration

Object/relational mappings are defined in an XML document. The mapping document is designed to be read-
able and hand-editable. The mapping language is object-centric, meaning that mappings are constructed around
persistent class declarations, not table declarations.

Note that, even though many NHibernate users choose to define XML mappings by hand, a number of tools ex-
ist to generate the mapping document, including NHibernate.Mapping.Attributes library and various template-
based code generators (CodeSmith, MyGeneration). Y ou may also use NHi ber nat e. Mappi ng. ByCode available
since NHibernate 3.2, or Fluent NHibernate [https://github.com/jagregory/fluent-nhibernate].

Let'skick off with an example mapping:

<?xm version="1.0"?>
<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 2" assenbl y="Eg"
namespace="Eg" >

<cl ass nanme="Cat" tabl e="CATS" di scrim nator-val ue="C'>
<id name="1d" colum="uid" type="Int64">
<generator class="hilo"/>
</id>
<di scri m nator col um="subcl ass" type="Char"/>
<property nane="BirthDate" type="Date"/>
<property nane="Col or" not-null="true"/>
<property nane="Sex" not-null="true" update="fal se"/>
<property nane="Wei ght"/>
<many-t o-one nane="Mte" colum="mate_ id"/>
<set name="Kittens">
<key col um="not her i d"/>
<one-to-nmany class="Cat"/>
</set>
<subcl ass nanme="Donesti cCat" discri nm nator-val ue="D">
<property nane="Nane" type="String"/>
</ subcl ass>
</ cl ass>

<cl ass nane="Dog">
<!'-- mapping for Dog could go here -->
</ cl ass>

</ hi ber nat e- mappi ng>

We will now discuss the content of the mapping document. We will only describe the document elements and
attributes that are used by NHibernate at runtime. The mapping document also contains some extra optional at-
tributes and elements that affect the database schemas exported by the schema export tool. (For example the
not - nul | attribute.)

5.1.1. XML Namespace

All XML mappings should declare the XML namespace shown. The actual schema definition may be found in
the sr c\ nhi ber nat e- mappi ng. xsd filein the NHibernate distribution.

Tip: to enable IntelliSense for mapping and configuration files, copy the appropriate . xsd files as part of any
project in your solution, (Bui | d Action can be"None") or as"Solution Files' or in your “Li b* folder and then
add it to the schenmas property of the xml file. You can copy itin<vs install ati on directory>\Xm\ Schenas,

NHibernate 5.1 33

https://github.com/jagregory/fluent-nhibernate

Basic O/R Mapping

take care because you will have to deal with different version of the xsd for different versions of NHibernate.

5.1.2. hibernate-mapping

This element has several optional attributes. The schema attribute specifies that tables referred to by this map-
ping belong to the named schema. If specified, table names will be qualified by the given schema name. If
missing, table names will be unqualified. The def aul t - cascade attribute specifies what cascade style should be
assumed for properties and collections which do not specify acascade attribute. The aut o-i nport attribute lets
us use unqualified class names in the query language, by default. The assenbl y and nanespace attributes spe-
cify the assembly where persistent classes are located and the namespace they are declared in.

<hi ber nat e- mappi ng

schema="schenmaNane" (1)
def aul t - cascade="none| save- updat e" (2)
aut o-i mport="true|fal se" (3)
assenbl y="Eg" (4)
nanespace="Eg" (5)
defaul t-access="fiel d| property|field. canecase(6)..."
default-1azy="true|fal se" (7)

/>

(1) schena (optional): The name of a database schema.

(2) defaul t-cascade (optiona - defaultsto none): A default cascade style.

(3) auto-inport (optional - defaults to true): Specifies whether we can use unqualified class names (of
classes in this mapping) in the query language.

(assenbl y and nanespace(optional): Specify assembly and namespace to assume for unqualified class

5 names in the mapping document.

(8)) defaul t-access (optional - defaults to property): The strategy NHibernate should use for accessing a
property value

(7) defaul t-1azy (optional - defaultsto t rue): Lazy fetching may be completely disabled by setting default-
lazy="fase".

If you are not using assenbl y and namespace attributes, you have to specify fully-qualified class names, includ-
ing the name of the assembly that classes are declared in.

If you have two persistent classes with the same (unqualified) name, you should set aut o-i nport="fal se".
NHibernate will throw an exception if you attempt to assign two classes to the same "imported” name.

5.1.3. class

Y ou may declare a persistent class using the cl ass element:

<cl ass
nanme="C assNane" (1)
t abl e="t abl eNane" (2)
di scri m nat or-val ue="di scri m nat or _val ue" (3)
mut abl e="true| f al se" (4)
schema="owner" (5)
proxy="Proxyl nterface" (6)
dynami c- updat e="true| f al se" (7)
dynam c-i nsert="true|fal se" (8)
sel ect - bef ore-updat e="true| f al se” (9)
pol ynmor phi sme"inplicit]|explicit" (10)
where="arbitrary sql where condition" (112)
persi ster="Persi sterd ass" (12)
bat ch-si ze="N" (13)
optim stic-lock="none|version|dirty|all" (14)
| azy="true|fal se" (15)

NHibernate 5.1 34

Basic O/R Mapping

abstract="true|fal se" (16)
/>

(1) nare: The fully qualified .NET class name of the persistent class (or interface), including its assembly
name.

(2) tabl e(optional - defaults to the unqualified class hame): The name of its database table.

(3) discrimnator-val ue (optional - defaults to the class name): A value that distinguishes individual sub-
classes, used for polymorphic behaviour. Acceptable valuesinclude nul I and not nul I .

(4) nutabl e (optional, defaultsto t r ue): Specifies that instances of the class are (not) mutable.

(5) schema (optiona): Override the schema name specified by the root <hi ber nat e- mappi ng> element.

(6) proxy (optional): Specifies an interface to use for lazy initializing proxies. You may specify the name of
the classitsalf.

(7) dynani c-updat e (optional, defaults to f al se): Specifies that UPDATE SQL should be generated at runtime
and contain only those columns whose values have changed.

(8) dynanic-insert (optional, defaultsto f al se): Specifies that | NSERT SQL should be generated at runtime
and contain only the columns whose values are not null.

(9) sel ect - bef ore-updat e (Optional, defaultsto f al se): Specifies that NHibernate should never perform an
SQL UPDATE unlessiit is certain that an object is actually modified. In certain cases (actually, only when a
transient object has been associated with a new session using updat e()), this means that NHibernate will
perform an extra SQL SELECT to determine if an UPDATE is actually required.

(10) pol ynor phi sm(optional, defaultstoi npl i ci t): Determines whether implicit or explicit query polymorph-
ismis used.

(11) wher e (optional) specify an arbitrary SQL WHERE condition to be used when retrieving objects of this class

(12) persister (optional): Specifiesacustom | d assPersi ster.

(13) batch-si ze (optional, defaultsto 1) specify a"batch size" for fetching instances of this class by identifier.

(14) optinmistic-1ock (optional, defaultsto ver si on): Determines the optimistic locking strategy.

(15) | azy (optional): Lazy fetching may be completely disabled by setting | azy="f al se".

(16) abstract (optional): Used to mark abstract superclassesin <uni on- subcl ass> hierarchies.

It is perfectly acceptable for the named persistent class to be an interface. Y ou would then declare implement-
ing classes of that interface using the <subcl ass> element. Y ou may persist any inner class. Y ou should specify
the class name using the standard form ie. Eg. Foo+Bar, Eg. Dueto an HQL parser limitation inner classes can
not be used in queriesin NHibernate 1.0.

Changes to immutable classes, mut abl e="f al se", will not be persisted. This allows NHibernate to make some
minor performance optimizations.

The optional proxy attribute enables lazy initialization of persistent instances of the class. NHibernate will ini-
tially return proxies which implement the named interface. The actual persistent object will be loaded when a
method of the proxy isinvoked. See "Proxiesfor Lazy Initialization™ below.

Implicit polymorphism means that instances of the class will be returned by a query that names any superclass
or implemented interface or the class and that instances of any subclass of the class will be returned by a query
that names the class itself. Explicit polymorphism means that class instances will be returned only be queries
that explicitly name that class and that queries that name the class will return only instances of subclasses
mapped inside this <cl ass> declaration as a <subcl ass> 0Or <j oi ned- subcl ass>. For most purposes the defaullt,
pol yror phi sm="i nplicit", is appropriate. Explicit polymorphism is useful when two different classes are
mapped to the same table (this allows a"lightweight" class that contains a subset of the table columns).

The persi st er attribute lets you customize the persistence strategy used for the class. You may, for example,
specify your own subclass of NHi ber nat e. Persi ster. EntityPersister Or you might even provide a com-
pletely new implementation of the interface NHi ber nat e. Persi ster. | O assPersi ster that implements per-
sistence via, for example, stored procedure cals, seridization to flat files or LDAP. See NHi bern-

NHibernate 5.1 35

Basic O/R Mapping

at e. Domai nMbdel . Cust onPer si st er for asimple example (of "persistence” to aHasht abl e).

Note that the dynani c- updat e and dynani c-i nsert Settings are not inherited by subclasses and so may also be
specified on the <subcl ass> Or <j oi ned- subcl ass> elements. These settings may increase performance in
some cases, but might actually decrease performance in others. Use judicioudly.

Use of sel ect - bef or e- updat e will usually decrease performance. It is very useful to prevent a database update
trigger being called unnecessarily.

If you enable dynani c- updat e, you will have a choice of optimistic locking strategies:

* version check the version/timestamp columns

al | check al columns

e dirty check the changed columns
* none do not use optimistic locking

We very strongly recommend that you use version/timestamp columns for optimistic locking with NHibernate.
Thisisthe optimal strategy with respect to performance and is the only strategy that correctly handles modific-
ations made outside of the session (ie. when I Sessi on. Updat e() is used). Keep in mind that a version or
timestamp property should never be null, no matter what unsaved- val ue strategy, or an instance will be detec-
ted as transient.

Beginning with NHibernate 1.2.0, version numbers start with 1, not O as in previous versions. This was done to
allow using 0 as unsaved- val ue for the version property.

5.1.4. subselect

An alternative to mapping a class to table or view columnsisto map a query. For that, we use the <subsel ect >
element, which is mutually exclusive with <subcl ass>, <j oi ned- subcl ass> and <uni on- subcl ass>. The con-
tent of the subsel ect element isa SQL query:

<subsel ect >
<! [CDATA[
SELECT cat. | D, cat.NAMVE, cat.SEX, cat.MATE FROM cat
11>

</ subsel ect >

Usually, when mapping a query using subsel ect you will want to mark the class as not mutable (nut -
abl e="fal se"), unless you specify custom SQL for performing the UPDATE, DELETE and INSERT opera-
tions.

Also, it makes sense to force synchronization of the tables affected by the query, using one or more
<synchr oni ze> entries:

<subsel ect >
<! [CDATA[
SELECT cat.ID, cat.NAVE, cat.SEX, cat. MATE FROM cat
11>

</ subsel ect >

<syncroni ze tabl e="cat"/>

Y ou then still have to declare the class id and properties.

NHibernate 5.1 36

Basic O/R Mapping

5.15.id

Mapped classes must declare the primary key column of the database table. Most classes will also have a prop-
erty holding the unique identifier of an instance. The <i d> element defines the mapping from that property to
the primary key column.

<id
nanme="Pr opert yNane" (1)
type="t ypenane" (2)
col um="col unm_nane" (3)
unsaved- val ue="any| none| nul | | i d_val ue" (4)
access="fiel d| property| nosetter| C assNane(5)">
<gener ator class="generatorC ass"/>

</id>

(1) nare (optiona): The name of the identifier property.

(2) type (optiona): A name that indicates the NHibernate type.

(3) col um (optional - defaults to the property name): The name of the primary key column.

(4) unsaved-val ue (optional - defaults to a "sensible" value): An identifier property value that indicates that
an instance is newly instantiated (unsaved), distinguishing it from transient instances that were saved or
loaded in a previous session.

(5) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

If the nane attributeis missing, it isassumed that the class has no identifier property.
The unsaved- val ue attribute is almost never needed in NHibernate 1.0.

There is an aternative <conposi t e-i d> declaration to allow access to legacy data with composite keys. We
strongly discourage its use for anything else.

5.1.5.1. generator

The required gener at or names a .NET class used to generate unique identifiers for instances of the persistent
class.

The generator can be declared using the <gener at or > child element. If any parameters are required to configure
or initialize the generator instance, they are passed using <par an> elements.

<id name="1d" type="Int64" col um="uid" unsaved-val ue="0">
<generator class="NH bernate.|d. Tabl eH LoGenerator">
<par am nanme="t abl e" >ui d_t abl e</ par an>
<par am nane="col utm" >next _hi _val ue_col utm</ par an»
</ gener at or >
</id>

If no parameters are required, the generator can be declared using a gener at or attribute directly on the <i d>
element, as follows;

<id name="1d" type="Int64" col um="uid" unsaved-val ue="0" generator="native" />

All generators implement the interface NHi bernate. I d. 1 1dentifierGenerator. Thisis a very simple inter-
face; some applications may choose to provide their own specialized implementations. However, NHibernate
provides arange of built-in implementations. There are shortcut names for the built-in generators:

NHibernate 5.1 37

Basic O/R Mapping

i ncrenent
generates identifiers of any integral type that are unique only when no other process is inserting data into
the same table. Do not use in a cluster.

identity
supports identity columns in DB2, MySQL, MS SQL Server and Sybase. The identifier returned by the
database is converted to the property type using Convert. ChangeType. Any integral property type is thus
supported.

sequence
uses a sequence in DB2, PostgreSQL, Oracle or a generator in Firebird. The identifier returned by the data-
base is converted to the property type using Convert . ChangeType. Any integral property type is thus sup-
ported.

hilo
uses a hi/lo agorithm to efficiently generate identifiers of any integral type, given a table and column (by
default hi ber nat e_uni que_key and next _hi respectively) as a source of hi values. The hi/lo agorithm
generates identifiers that are unique only for a particular database. Do not use this generator with a user-
supplied connection.

Y ou can use the "where" parameter to specify the row to use in atable. Thisis useful if you want to use a
single table for your identifiers, with different rows for each table.

seqghilo
uses a hi/lo algorithm to efficiently generate identifiers of any integra type, given a named database se-
guence.

uui d. hex
uses System Guid and its ToString(string format) method to generate identifiers of type string. The
length of the string returned depends on the configured f or mat .

uui d. string
uses anew Syst em Gui d to create abyt e[] that is converted to a string.

gui d
uses anew Syst em Gui d astheidentifier.

gui d. conmb
uses the algorithm to generate a new System Guid described by Jimmy Nilsson in this article
[https://www.informit.com/articles/article.aspx 7p=25862] .

native
picksi dentity, sequence Or hi | o depending upon the capabilities of the underlying database.

assi gned
lets the application to assign an identifier to the object before save() iscalled.

foreign
uses the identifier of another associated object. Usually used in conjunction with a <one-t o- one> primary
key association.

5.1.5.2. Hi/Lo Algorithm

The hi | o and seghi | o generators provide two alternate implementations of the hi/lo algorithm, a favorite ap-

NHibernate 5.1 38

https://www.informit.com/articles/article.aspx?p=25862

Basic O/R Mapping

proach to identifier generation. The first implementation requires a "specia" database table to hold the next
available "hi" value. The second uses an Oracle-style sequence (where supported).

<id name="1d" type="Int64" colum="cat _id">
<generator class="hilo">
<par am name="t abl e" >hi _val ue</ par an»
<par am nane="col um" >next _val ue</ par anr
<par am nane="max_| 0" >100</ par an>
</ gener at or >
</id>

<id name="1d" type="Int64" colum="cat id">
<generator class="seghil o0">
<par am nane="sequence" >hi _val ue</ par anr
<par am nanme="max_| 0" >100</ par an»
</ gener at or >
</id>

Unfortunately, you can't use hi | o when supplying your own DbConnect i on to NHibernate. NHibernate must be
ableto fetch the "hi" value in a new transaction.

5.1.5.3. UUID Hex Algorithm

<id name="1d" type="String" colum="cat _id">
<generator class="uuid. hex">
<par am nane="f or mat " >f or mat _val ue</ par an»
<par am nane="separ at or " >separ at or _val ue</ par an»
</ gener at or >
</id>

The UUID is generated by calling Gui d. NewGui d() . ToStri ng(format). The valid values for f or mat are de-
scribed in the MSDN documentation. The default separ at or is- and should rarely be modified. The f or mat
determines if the configured separ at or can replace the default separator used by the f or mat .

5.1.5.4. UUID String Algorithm

The UUID is generated by calling Gui d. NewGui d() . ToByt eArray() and then converting the byte[] into a
char[]. Thechar[] isreturned asast ri ng consisting of 16 characters.

5.1.5.5. GUID Algorithms

The gui d identifier is generated by calling Gui d. NewGui d() . To address some of the performance concerns with
using Guids as primary keys, foreign keys, and as part of indexes with MS SQL the gui d. conb can be used.
The benefit of using the gui d. conb with other databases that support GUIDs has not been measured.

5.1.5.6. Identity columns and Sequences

For databases which support identity columns (DB2, MySQL, Sybase, MS SQL), you may usei dentity key
generation. For databases that support sequences (DB2, Oracle, PostgreSQL, Interbase, McKoi, SAP DB) you
may use sequence Style key generation. Both these strategies require two SQL queriesto insert a new object.

<id name="1d" type="Int64" col um="uid">
<gener at or cl ass="sequence">
<par am nane="sequence" >ui d_sequence</ par an>
</ gener at or >
</id>

<id name="1d" type="Int64" col um="ui d" unsaved-val ue="0">
<generator class="identity"/>

NHibernate 5.1 39

Basic O/R Mapping

</id>

For cross-platform development, the native strategy will choose from the identity, sequence and hilo
strategies, dependent upon the capabilities of the underlying database.

5.1.5.7. Assigned Identifiers

If you want the application to assign identifiers (as opposed to having NHibernate generate them), you may use
the assi gned generator. This special generator will use the identifier value already assigned to the object's iden-
tifier property. Be very careful when using this feature to assign keys with business meaning (almost always a
terrible design decision).

Due to its inherent nature, entities that use this generator cannot be saved via the |Session's SaveOrUpdate()
method. Instead you have to explicitly specify to NHibernate if the object should be saved or updated by calling
either the save() or Updat e() method of the | Session.

5.1.5.8. Enhanced identifier generators

Starting with NHibernate release 3.3.0, there are 2 new generators which represent a re-thinking of 2 different
aspects of identifier generation. The first aspect is database portability; the second is optimization. Optimization
means that you do not have to query the database for every request for a new identifier value. These two new
generators are intended to take the place of some of the named generators described above, starting in 3.3.x.
However, they areincluded in the current releases and can be referenced by FON.

The first of these new generators iS NHi ber nat e. | d. Enhanced. SequenceSt yl eGenerat or (short name en-
hanced- sequence) which is intended, firstly, as a replacement for the sequence generator and, secondly, as a
better portability generator than nati ve. Thisis because nati ve generally chooses between i dentity and se-
quence Which have largely different semantics that can cause subtle issues in applications eyeing portability.
NH ber nat e. | d. Enhanced. SequenceSt yl eGener at or, however, achieves portability in a different manner. It
chooses between atable or a sequence in the database to store its incrementing values, depending on the capab-
ilities of the dialect being used. The difference between this and nat i ve is that table-based and sequence-based
storage have the same exact semantic. In fact, sequences are exactly what NHibernate tries to emulate with its
table-based generators. This generator has a number of configuration parameters:

e sequence_name (optional, defaultsto hi ber nat e_sequence): the name of the sequence or table to be used.

e initial_value (optional, defaults to 1): the initia value to be retrieved from the sequence/table. In se-
guence creation terms, thisis analogous to the clause typically named "STARTS WITH".

e increment_size (optional - defaultsto 1): the value by which subsequent calls to the sequence/table should
differ. In sequence creation terms, thisis analogous to the clause typically named "INCREMENT BY".

e force_tabl e_use (optiona - defaultsto f al se): should we force the use of atable as the backing structure
even though the dialect might support sequence?

e val ue_col urm (optional - defaults to next _val): only relevant for table structures, it is the name of the
column on the table which is used to hold the value.

* prefer_sequence_per_entity (optiona - defaults to f al se): should we create separate sequence for each
entity that share current generator based on its name?

* sequence_per_entity_suffix (optiona - defaults to _SeEQ): suffix added to the name of a dedicated se-
guence.

e optimnzer (optional - defaultsto none): See Section 5.1.5.8.1, “Identifier generator optimization”

The second of these new generators is NHi ber nat e. | d. Enhanced. Tabl eGener at or (short name enhanced-t a-
bl e), which is intended, firstly, as a replacement for the t abl e generator, even though it actually functions
much more like org. hi bernate.id. Ml tipl eH LoPer Tabl eGenerator (not available in NHibernate), and
secondly, as a re-implementation of org. hi bernate. i d. Ml ti pl eHi LoPer Tabl eGener at or (not available in

NHibernate 5.1 40

Basic O/R Mapping

NHibernate) that utilizes the notion of pluggable optimizers. Essentially this generator defines a table capable
of holding a number of different increment values simultaneously by using multiple distinctly keyed rows. This
generator has a number of configuration parameters:

e tabl e_nane (optional - defaultsto hi ber nat e_sequences): the name of the table to be used.

* val ue_col um_nane (optional - defaults to next _val): the name of the column on the table that is used to
hold the value.

e segnent _col unmn_name (optional - defaults to sequence_nane): the name of the column on the table that is
used to hold the "segment key". Thisis the value which identifies which increment value to use.

e segnent _val ue (optiona - defaults to def aul t): The "segment key" value for the segment from which we
want to pull increment values for this generator.

e segnent _val ue_| engt h (optional - defaults to 255): Used for schema generation; the column size to create
this segment key column.

e initial_val ue (optional - defaultsto 1): Theinitial value to be retrieved from the table.

e increment_size (optiona - defaultsto 1): The value by which subsequent callsto the table should differ.

e optimnzer (optional - defaultsto 2?): See Section 5.1.5.8.1, “Identifier generator optimization”.

5.1.5.8.1. Identifier generator optimization

For identifier generators that store values in the database, it is inefficient for them to hit the database on each
and every call to generate a new identifier value. Instead, you can group a bunch of them in memory and only
hit the database when you have exhausted your in-memory value group. Thisis the role of the pluggable optim-
izers. Currently only the two enhanced generators (Section 5.1.5.8, “Enhanced identifier generators’ support
this operation.

* none (generally this is the default if no optimizer was specified): this will not perform any optimizations
and hit the database for each and every request.

* hilo: applies ahi/lo algorithm around the database retrieved values. The values from the database for this
optimizer are expected to be sequential. The values retrieved from the database structure for this optimizer
indicates the "group number". Thei ncrenent _si ze is multiplied by that value in memory to define a group
"hi value".

e pool ed: as with the case of hil o, this optimizer attempts to minimize the number of hits to the database.
Here, however, we simply store the starting value for the "next group" into the database structure rather
than a sequentia value in combination with an in-memory grouping algorithm. Here, i ncrenment _si ze
refers to the values coming from the database.

e pool ed-1 o: Similar to pool ed, except that it's the starting value of the "current group” that is stored into the
database structure. Here, i ncr enent _si ze refersto the values coming from the database.

5.1.6. composite-id

<conposite-id
nanme="Pr opert yName"
cl ass="C assNane"
unsaved- val ue="any| none"
access="fiel d| property| nosetter| d assNanme" >

<key- property nane="PropertyNane" type="typenane" col um="col umm_nane"/>
<key- many-t o- one nane="PropertyNane cl ass="C assNane" col utm="col utm_nane"/ >

</ conposi te-i d>

For a table with a composite key, you may map multiple properties of the class as identifier properties. The
<conposi t e-i d> element accepts <key- property> property mappings and <key- many- t o- one> mMappings as
child elements.

<conposi te-id>

NHibernate 5.1 41

Basic O/R Mapping

<key- property nanme="Medi car eNunber" />
<key- property nane="Dependent"/>
</ conposite-id>

Y our persistent class must override Equal s() and Get HashCode() to implement composite identifier equality. It
must also be marked with the seri al i zabl e attribute.

Unfortunately, this approach to composite identifiers means that a persistent object is its own identifier. There
is no convenient "handle" other than the object itself. Y ou must instantiate an instance of the persistent class it-
self and populate its identifier properties before you can Load() the persistent state associated with a composite
key. We will describe a much more convenient approach where the composite identifier is implemented as a
separate class in Section 7.4, “ Components as composite identifiers’. The attributes described below apply only
to this alternative approach:

« nane (optional, required for this approach): A property of component type that holds the composite identifi-
er (see next section).

e access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

* class (optiona - defaults to the property type determined by reflection): The component class used as a
composite identifier (see next section).

5.1.7. discriminator

The <di scri ni nat or > element is required for polymorphic persistence using the table-per-class-hierarchy map-
ping strategy and declares a discriminator column of the table. The discriminator column contains marker val-
ues that tell the persistence layer what subclass to instantiate for a particular row. A restricted set of types may
be used: Stri ng, Char, I nt 32, Byt e, Short, Bool ean, YesNo, Tr ueFal se.

<di scri m nat or
col um="di scri m nator_col um" (1)

type="di scrim nator _type" (2)
force="true|fal se" (3)
insert="true|fal se" (4)

formul a="arbitrary SQ. expressi(5)on"
/>

(1) col umn (optional - defaultsto cl ass) the name of the discriminator column.

(2) type (optional - defaultsto st ri ng) a name that indicates the NHibernate type

(3) force (optiona - defaults to fal se) "force" NHibernate to specify allowed discriminator values even
when retrieving al instances of the root class.

(4) insert (optiona - defaultstotrue) setthistofal se if your discriminator column is also part of a mapped
composite identifier.

(5) fornul a (optional) an arbitrary SQL expression that is executed when a type has to be evaluated. Allows
content-based discrimination.

Actual values of the discriminator column are specified by the di scri ni nat or - val ue attribute of the <cl ass>
and <subcl ass> elements.

The force attribute is (only) useful if the table contains rows with "extra" discriminator values that are not
mapped to a persistent class. Thiswill not usually be the case.

Using the f or mul a attribute you can declare an arbitrary SQL expression that will be used to evaluate the type
of arow:

<di scri m nat or
formul a="case when CLASS TYPE in ('a', 'b', 'c') then 0 else 1 end"

NHibernate 5.1 42

Basic O/R Mapping

type="1nt 32"/ >

5.1.8. version (optional)

The <ver si on> element is optional and indicates that the table contains versioned data. Thisis particularly use-
ful if you plan to use long transactions (see below).

<versi on
col um="ver si on_col um" (1)
nane="Pr opert yNane" (2)
type="t ypenane" (3)
access="fiel d| property| nosetter| d assNane" (4)
unsaved- val ue="nul | | negati ve| undef i ned| val ue" (5)
gener at ed="never | al ways" (6)

/>

(1) col um (optional - defaults to the property name): The name of the column holding the version number.

(2) nane: The name of aproperty of the persistent class.

(3) type (optional - defaultsto 1 nt 32): The type of the version number.

(4) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

(5) unsaved-val ue (optional - defaults to a "sensible” value): A version property value that indicates that an
instance is newly instantiated (unsaved), distinguishing it from transient instances that were saved or
loaded in aprevious session. (undef i ned specifies that the identifier property value should be used.)

(6) generated (optional - defaults to never): Specifies that this version property value is actually generated
by the database. See the discussion of Section 5.5, “Generated Properties’.

Version may be of type I nt 64, | nt 32, | nt 16, Ti cks, Ti mest anp, Ti reSpan, dat et i meof f set, ... (or their nul-
lable counterpartsin .NET 2.0). Any type implementing | Ver si onType is usable asaversion.

5.1.9. timestamp (optional)

The optional <t i nmest anp> element indicates that the table contains timestamped data. Thisisintended as an al-
ternative to versioning. Timestamps are by nature a less safe implementation of optimistic locking. However,
sometimes the application might use the timestamps in other ways.

<ti mest anp
col um="ti nmest anp_col um" (1)
nane=" Pr opert yNane" (2)

access="fiel d| property| nosetter| d as(3)sNane"
unsaved- val ue="nul | | undefi ned| val ue" (4)
gener at ed="never | al ways" (5)

/>

(1) col um (optional - defaults to the property name): The name of a column holding the timestamp.

(2) nane: The name of aproperty of .NET type Dat eTi e of the persistent class.

(3) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

(4) unsaved-val ue (optional - defaultsto nul 1): A timestamp property value that indicates that an instance is
newly instantiated (unsaved), distinguishing it from transient instances that were saved or loaded in a pre-
vious session. (undef i ned specifies that the identifier property value should be used.)

(5) generated (optional - defaults to never): Specifies that this timestamp property value is actually gener-
ated by the database. See the discussion of Section 5.5, “Generated Properties’.

Note that <t i mest anp> isequivalent to <ver si on type="ti mestanp">.

NHibernate 5.1 43

Basic O/R Mapping

5.1

.10. property

The <pr oper t y> element declares a persistent property of the class.

<property
name="pr opert yNanme" (1)
col um="col um_nane" (2)
type="t ypenane" (3)
updat e="true| f al se" (4)
insert="true|fal se" (4)
formul a="arbitrary SQ. expression" (5)
access="fi el d| property| Cl assNane" (6)
optimstic-lock="true|fal se" (7)
gener at ed="never | i nsert| al ways" (8)
| azy="true| fal se" (9)

/>

(1
(2)
(3)
(4

(5)

(6)

(7

(8)

(9)

name: the name of the property of your class.

col umm (optional - defaults to the property name): the name of the mapped database table column.

t ype (optional): a name that indicates the NHibernate type.

update, insert (optional - defaultsto true) : specifies that the mapped columns should be included in
SQL uPDATE and/or | NSERT statements. Setting both to fal se allows a pure "derived" property whose
value is initialized from some other property that maps to the same column(s) or by atrigger or other ap-
plication.

formul a (optional): an SQL expression that defines the value for a computed property. Computed proper-
ties do not have a column mapping of their own.

access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

optimistic-lock (optiona - defaultsto t r ue): Specifies that updates to this property do or do not require
acquisition of the optimistic lock. In other words, determines if a version increment should occur when
this property isdirty.

gener at ed (optional - defaults to never): Specifies that this property value is actually generated by the
database. See the discussion of Section 5.5, “Generated Properties’.

| azy (optiona - defaultsto f al se): Specifies that this property islazy. A lazy property is not loaded when
the object is initially loaded, unless the fetch mode has been overridden in a specific query. Vaues for
lazy properties are loaded when any lazy property of the object is accessed.

typename could be:

1

3.
4.
S.

The name of a NHibernate basic type (eg. 1nt32, String, Char, DateTine, Tinestanp, Single,
Byte[], Qbject, ...).

The name of a .NET type with a default basic type (eg. System I nt 16, System Single, System Char,
System String, System DateTine, SystemByte[], ..)

The name of an enumeration type (eg. Eg. Col or, Eg).

The name of aserializable .NET type.

The class name of acustom type (eg. 1 11 f1 ow. Type. MyCust onilype).

Note that you have to specify full assembly-qualified names for all except basic NHibernate types (unless you
set assenbl y and/or nanespace attributes of the <hi ber nat e- mappi ng> element).

NHibernate supports .NET 2.0 Nul | abl e types. These types are mostly treated the same as plain non-Nul | abl e
types internally. For example, a property of type Nul | abl e<I nt 32> can be mapped using t ype="1nt 32" or
type="System | nt 32".

If you do not specify atype, NHibernate will use reflection upon the named property to take a guess at the cor-
rect NHibernate type. NHibernate will try to interpret the name of the return class of the property getter using

NHibernate 5.1 44

Basic O/R Mapping

rules 2, 3, 4 in that order. However, this is not always enough. In certain cases you will still need the t ype at-
tribute. (For example, to distinguish between NHi ber nat eUti | . Dat eTi me and NHi ber nat eUti | . Ti mest anp, Of
to specify a custom type.)

See also Section 5.2, “NHibernate Types'.

The access attribute lets you control how NHibernate will access the value of the property at runtime. The
value of the access attribute should be text formatted as access-strategy. naning-strategy. The
. nam ng- st rat egy IS not always required.

Table5.1. Access Strategies
Access Strategy Name Description

property
The default implementation. NHibernate uses the get/

set accessors of the property. No naming strategy
should be used with this access strategy because the
value of the name attribute is the name of the prop-
erty.

field
NHibernate will access the field directly. NHibernate

uses the value of the nane attribute as the name of the
field. This can be used when a property's getter and
setter contain extra actions that you don't want to oc-
cur when NHibernate is populating or reading the ob-
ject. If you want the name of the property and not the
field to be what the consumers of your APl use with
HQL, then anaming strategy is needed.

nosetter
NHibernate will access the field directly when setting

the value and will use the Property when getting the
value. This can be used when a property only exposes
a get accessor because the consumers of your API
can't change the value directly. A naming strategy is
required because NHibernate uses the value of the
name attribute as the property nhame and needs to be
told what the name of thefield is.

Cl assName
If NHibernate's built in access strategies are not what

is needed for your situation then you can build your
own by implementing the interface NHi bern-
ate. Property. | PropertyAccessor. The value of the
access attribute should be an assembly-qualified
name that can be loaded with Activat-
or.Createl nstance(string assenbl yQual i fi ed-
Nane) .

Table 5.2. Naming Strategies

NHibernate 5.1 45

Basic O/R Mapping

Naming Strategy Name

canel case

Description

The nane attribute is converted to camel case to find
the field. <property nane="FooBar" ... > usesthe
field f ooBar .

canel case- under score

The name attribute is converted to camel case and pre-
fixed with an underscore to find the field. <property
name="FooBar" ... > usesthefield fooBar.

canel case- m under score

| ower case

The nare attribute is converted to camel case and pre-
fixed with the character m and an underscore to find
the field. <property nane="FooBar" ... > usesthe
field m f ooBar.

The nane attribute is converted to lower case to find
the Field. <property name="FooBar" ... > usesthe
field f oobar.

| ower case-under score

The nane attribute is converted to lower case and pre-
fixed with an underscore to find the Field. <property
name="FooBar" ... > usesthefield foobar.

pascal case-underscore

pascal case-m

pascal case- m under scor e

5.1.11. many-to-one

The nane attribute is prefixed with an underscore to
find the field. <property name="FooBar" ... > USES
thefield _FooBar.

The nane attribute is prefixed with the character mto
find the field. <property name="FooBar" ... > USES
the field nFooBar .

The nare attribute is prefixed with the character mand
an underscore to find the field. <property
name="FooBar" ... > usesthefield m FooBar.

An ordinary association to another persistent class is declared using a many-t o- one element. The relational
model is a many-to-one association. (It'sreally just an object reference.)

<many-t o- one
nane=" Pr opert yNane"
col um="col umm_nane"
cl ass="d assNange"

(1)
(2)
(3)

cascade="al | | none| save- updat e| del et e| del et e- or phan| (4) al | - del et e- or phan”

fetch="j oi n| sel ect™" (5)
updat e="true| f al se" (6)
insert="true|fal se" (6)
property-ref="PropertyNaneFromAssoci at edCl ass" (7)
access="fiel d| property| nosetter|C assNane" (8)
uni que="true| fal se" (9)

NHibernate 5.1

46

Basic O/R Mapping

optimstic-lock="true|fal se" (10)
not - f ound="i gnor e| excepti on" (11)
/>

(1) nane: The name of the property.

(2) col um (optional): The name of the column.

(3) class (optiona - defaults to the property type determined by reflection): The name of the associated
class.

(4) cascade (optional): Specifies which operations should be cascaded from the parent object to the associ-
ated object.

(5) fetch (optional - defaultsto sel ect): Chooses between outer-join fetching or sequential select fetching.

(6) update, insert (optional - defaults to true) specifies that the mapped columns should be included in
SQL urDATE and/or | NSERT statements. Setting both to f al se allows a pure "derived" association whose
value is initialized from some other property that maps to the same column(s) or by atrigger or other ap-
plication.

(7) property-ref: (optional) The name of a property of the associated class that is joined to this foreign key.
If not specified, the primary key of the associated classis used.

(8) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

(9) uni que (optional): Enable the DDL generation of a unique constraint for the foreign-key column.

(10) optimistic-1ock (optiona - defaultsto t rue): Specifies that updates to this property do or do not require
acquisition of the optimistic lock. In other words, determines if a version increment should occur when
this property isdirty.

(11) not - f ound (optional - defaultsto except i on): Specifies how foreign keys that reference missing rows will
be handled: i gnor e will treat amissing row as a null association.

The cascade altribute permits the following values: al |, save-update, del ete, del et e-orphan, al | -de-
| et e- or phan and none. Setting a value other than none will propagate certain operations to the associated
(child) object. See "Lifecycle Objects' below.

Thef et ch attribute accepts two different values:

* joi n Fetch the association using an outer join
e sel ect Fetch the association using a separate query

A typical many- t o- one declaration looks as simple as

<many-t o- one nane="product" class="Product" col um="PRODUCT | D"'/>

Theproperty-ref attribute should only be used for mapping legacy data where aforeign key refersto a unique
key of the associated table other than the primary key. Thisis an ugly relational model. For example, suppose
the Product class had a unique serial number, that is not the primary key. (The uni que attribute controls
NHibernate's DDL generation with the SchemaExport tool.)

<property nanme="seri al Nunber" uni que="true" type="string" col um="SERI AL_NUMBER'/ >

Then the mapping for o der | t emmight use:

<many-t o-one nane="product" property-ref="serial Nunber" col um="PRODUCT_SERI AL_NUMBER"'/ >

Thisis certainly not encouraged, however.

5.1.12. one-to-one

NHibernate 5.1 47

Basic O/R Mapping

A one-to-one association to another persistent classis declared using aone- t o- one element.

<one-t o0-one

name="Pr oper t yNanme" (1)
cl ass="d assNane" (2)
cascade="al | | none| save- updat e| del et e| del et e- or phan| (3) al | - del et e- or phan”
constrai ned="true| fal se" (4)
fetch="j oi n| sel ect™ (5)
property-ref="PropertyNaneFromAssoci at edd ass" (6)
access="fiel d| property| nosetter| C assNane" (7)

/>

(1) nane: The name of the property.

(2) class (optional - defaults to the property type determined by reflection): The name of the associated
class.

(3) cascade (optional) specifies which operations should be cascaded from the parent object to the associated
object.

(4) constrained (optional) specifies that aforeign key constraint on the primary key of the mapped table ref-
erences the table of the associated class. This option affects the order in which Save() and Del ete() are
cascaded (and is also used by the schema export toal).

(5) fetch (optional - defaultsto sel ect): Chooses between outer-join fetching or sequentia select fetching.

(6) property-ref: (optional) The name of a property of the associated class that is joined to the primary key
of this class. If not specified, the primary key of the associated classis used.

(7) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

There are two varieties of one-to-one association:

e primary key associations
* unique foreign key associations

Primary key associations don't need an extra table column; if two rows are related by the association then the
two table rows share the same primary key value. So if you want two objects to be related by a primary key as-
sociation, you must make sure that they are assigned the same identifier value!

For a primary key association, add the following mappings to Enpl oyee and Per son, respectively.

<one-t o0- one nanme="Person" cl ass="Person"/>
<one-to0-one nanme="Enpl oyee" cl ass="Enpl oyee" constrai ned="true"/>

Now we must ensure that the primary keys of related rows in the PERSON and EMPLOY EE tables are equal.
We use a special NHibernate identifier generation strategy called f or ei gn:

<cl ass nane="Person" tabl e="PERSON'>
<id name="1d" col um="PERSON | D'>
<generator class="foreign">
<par am nane="pr operty" >Enpl oyee</ par anr
</ gener at or >
</id>

<one-t o- one nane="Enpl oyee"
cl ass="Enpl oyee"
constrai ned="true"/>
</ cl ass>

NHibernate 5.1 48

Basic O/R Mapping

A newly saved instance of Person is then assigned the same primary key value as the Enpl oyee instance re-
ferred with the Enpl oyee property of that Per son.

Alternatively, aforeign key with a unique constraint, from Enpl oyee to Per son, may be expressed as.

<many-t o- one name="Person" class="Person" col um="PERSON | D' uni que="true"/>

And this association may be made bidirectional by adding the following to the Per son mapping:

<one-t o- one name="Enpl oyee" cl ass="Enpl oyee" property-ref="Person"/>

5.1.13. natural-id

<natural -id nmutabl e="true|fal se"/>
<property ... [>
<many-to-one ... />

</natural -id>

Even though we recommend the use of surrogate keys as primary keys, you should still try to identify natural
keysfor all entities. A natural key is a property or combination of properties that is unique and non-null. If itis
also immutable, even better. Map the properties of the natural key inside the <nat ur al -i d> element. NHibern-
ate will generate the necessary unique key and nullability constraints, and your mapping will be more self-
documenting.

We strongly recommend that you implement Equal s() and Get HashCode() to compare the natural key proper-
ties of the entity.

This mapping is not intended for use with entities with natural primary keys.

e nutabl e (optional, defaults to f al se): By default, natural identifier properties as assumed to be immutable
(constant).

5.1.14. component, dynamic-component

The <conponent > element maps properties of a child object to columns of the table of a parent class. Compon-
ents may, in turn, declare their own properties, components or collections. See "Components' below.

<conponent

nanme="Pr opert yNane" (1)
cl ass="d assNane" (2)
insert="true|fal se" (3)
upat e="true| f al se" (4)
access="fiel d| property| nosetter|C assNane" (5)
optimstic-lock="true|fal se"> (6)
<property />

<many-to-one />

</ conponent >

(1) nane: The name of the property.

(2) class (optional - defaults to the property type determined by reflection): The name of the component
(child) class.

(3) insert: Do the mapped columns appear in SQL | NSERTS?

(4) updat e: Do the mapped columns appear in SQL UPDATES?

NHibernate 5.1 49

Basic O/R Mapping

(5) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

(6) optinistic-1ock (optiona - defaults to t rue): Specifies that updates to this component do or do not re-
quire acquisition of the optimistic lock. In other words, determines if a version increment should occur
when this property isdirty.

The child <pr oper t y> tags map properties of the child class to table columns.

The <conponent > element allows a <par ent > sub-element that maps a property of the component class as a ref-
erence back to the containing entity.

The <dynani ¢- component > element allows an | bi cti onary to be mapped as a component, where the property

names refer to keys of the dictionary.

5.1.15. properties

The <properti es> element allows the definition of a named, logical grouping of the properties of a class. The
most important use of the construct is that it allows a combination of properties to be the target of a property-
ref . Itisalso aconvenient way to define a multi-column unique constraint. For example:

<properties

nane="| ogi cal Nane" (1)
insert="true|fal se" (2)
updat e="true| f al se" (3)
optimstic-lock="true|fal se" (4)
uni que="true| fal se"> (5)

<property .../>
<many-to-one .../>

</ properties>

(1) nane: thelogical name of the grouping. It is not an actual property name.

(2) insert: dothemapped columns appear in SQL | NSERTs?

(3) updat e: do the mapped columns appear in SQL UPDATEs ?

(4) optinistic-1ock (optional - defaults to t rue): specifies that updates to these properties either do or do
not reguire acquisition of the optimistic lock. It determines if aversion increment should occur when these
properties are dirty.

(5) uni que (optional - defaultsto f al se): specifies that a unique constraint exists upon all mapped columns of
the component.

For example, if we have the following <pr oper t i es> mapping:

<cl ass nanme="Person" >
<i d name="per sonNunber" />
<properties nanme="nanme" uni que="true" update="fal se">
<property nane="firstNane" />
<property nane="| ast Name" />
<property nanme="initial" />
</ properties>
</ cl ass>

Y ou might have some legacy data association that refersto this unique key of the Per son table, instead of to the
primary key:

<many-t o- one nane="owner" cl ass="Person" property-ref="nane">
<col um nanme="first Name" />
<col um nane="1| ast Nane" />
<col um nanme="initial" />

NHibernate 5.1 50

Basic O/R Mapping

</ many-t o- one>

The use of this outside the context of mapping legacy datais not recommended.

5.1.16. subclass

Finally, polymorphic persistence requires the declaration of each subclass of the root persistent class. For the
(recommended) table-per-class-hierarchy mapping strategy, the <subcl ass> declaration is used.

<subcl ass
nanme="C assNane" (1)
di scri m nator-val ue="di scri m nat or _val ue" (2)
proxy="Proxyl nterface" (3)
lazy="true| fal se" (4)

dynami c- updat e="true| f al se"
dynam c-insert="true|fal se">

<property [>
<properties />

</ subcl ass>

(1) nane: Thefully qualified .NET class nhame of the subclass, including its assembly name.

(2) discrimnator-val ue (optional - defaults to the class name): A value that distinguishes individual sub-
classes.

(3) proxy (optional): Specifies aclass or interface to use for lazy initializing proxies.

(4) lazy (optional, defaultstot rue): Setting | azy="f al se" disables the use of lazy fetching.

Each subclass should declare its own persistent properties and subclasses. <ver si on> and <i d> properties are
assumed to be inherited from the root class. Each subclass in a hierarchy must define a unique di scri ni nat or -
val ue. If noneis specified, the fully qualified .NET class nameis used.

For information about inheritance mappings, see Chapter 8, Inheritance Mapping.

5.1.17. joined-subclass

Alternatively, a subclass that is persisted to its own table (table-per-subclass mapping strategy) is declared us-
ing a<j oi ned- subcl ass> element.

<j oi ned- subcl ass

nane="C assNane" (1)
proxy="Proxyl nterface" (2)
| azy="true|fal se" (3)

dynam c- updat e="true| f al se"
dynami c-insert="true|fal se">

<key >
<property />
<properties />

</ j oi ned- subcl ass>

(1) nare: Thefully qualified class name of the subclass.

(2) proxy (optional): Specifiesaclass or interface to use for lazy initializing proxies.

(3) |azy (optional): Setting | azy="t rue" isashortcut equivalent to specifying the name of the class itself as
the pr oxy interface.

NHibernate 5.1 51

Basic O/R Mapping

No discriminator column is required for this mapping strategy. Each subclass must, however, declare a table
column holding the object identifier using the <key> element. The mapping at the start of the chapter would be
re-written as:

<?xm version="1.0"?>
<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 2" assenbl y="Eg"
nanespace="Eg" >

<cl ass name="Cat" tabl e="CATS">
<id name="1d" colum="uid" type="Int64">
<generator class="hilo"/>

</id>

<property nane="BirthDate" type="Date"/>
<property nane="Col or" not-null="true"/>
<property nanme="Sex" not-null="true"/>

<property nane="Wei ght"/>
<many-t o- one nane="Mate"/>
<set name="Kittens">
<key col um="MOTHER'/ >
<one-to-nmany class="Cat"/>
</set>
<j oi ned- subcl ass nane="Donesti cCat" tabl e="DOVESTI C_CATS" >
<key col um="CAT"/>
<property nanme="Nane" type="String"/>
</ j oi ned- subcl ass>
</ cl ass>

<cl ass nanme="Dog" >
<l-- mapping for Dog could go here -->
</ cl ass>

</ hi ber nat e- mappi ng>

For information about inheritance mappings, see Chapter 8, Inheritance Mapping.

5.1.18. union-subclass

A third option is to map only the concrete classes of an inheritance hierarchy to tables, (the table-
per-concrete-class strategy) where each table defines all persistent state of the class, including inherited state. In
NHibernate, it is not absolutely necessary to explicitly map such inheritance hierarchies. You can simply map
each class with a separate <cl ass> declaration. However, if you wish use polymorphic associations (e.g. an as-
sociation to the superclass of your hierarchy), you need to use the <uni on- subcl ass> mapping.

<uni on- subcl ass

nane="C assNane" (1)
tabl e="t abl enane" (2)
proxy="Proxyl nterface" (3)
| azy="true|fal se" (4)

dynam c- updat e="true| f al se"
dynami c-insert="true|fal se"
schema="schema"

cat al og="cat al og"

ext ends=" Super cl assNane"
abstract="true| fal se"

per si st er="C assNane"
subsel ect =" SQL expressi on"
entity-nane="EntityNanme"
node="el enent - nane" >

<property [>
<properties />

</ uni on- subcl ass>

NHibernate 5.1 52

Basic O/R Mapping

(1) nane: Thefully qualified class name of the subclass.

(2) tabl e: The name of the subclass table.

(3) proxy (optional): Specifiesaclass or interface to use for lazy initializing proxies.

(4) 1azy (optional, defaultstot rue): Setting | azy="f al se" disablesthe use of lazy fetching.

No discriminator column or key column is required for this mapping strategy.

For information about inheritance mappings, see Chapter 8, Inheritance Mapping.

5.1.19. join

Using the <j oi n> element, it is possible to map properties of one class to severa tables, when there's a 1-to-1
relationship between the tables.

<join
t abl e="t abl enane" (1)
schema="owner" (2)
fetch="j oi n| sel ect" (3)
i nverse="true|fal se" (4)
optional ="true|fal se"> (5)
<key ... />
<property ... />

</joi n>

(1) tabl e: The name of the joined table.

(2) schema (optiona): Override the schema name specified by the root <hi ber nat e- mappi ng> element.

(3) fetch (optiona - defaultstoj oi n): If set toj oi n, the default, NHibernate will use an inner join to retrieve
a<j oi n> defined by a class or its superclasses and an outer join for a <j oi n> defined by a subclass. If set
to sel ect then NHibernate will use a sequential select for a <j oi n> defined on a subclass, which will be
issued only if arow turns out to represent an instance of the subclass. Inner joins will still be used to re-
trieve a<j oi n> defined by the class and its superclasses.

(4) inverse (optiona - defaultsto f al se): If enabled, NHibernate will not try to insert or update the proper-
ties defined by thisjoin.

(5) optional (optiona - defaults to fal se): If enabled, NHibernate will insert a row only if the properties
defined by thisjoin are non-null and will aways use an outer join to retrieve the properties.

For example, the address information for a person can be mapped to a separate table (while preserving value
type semantics for al properties):

<cl ass nanme="Per son"
t abl e=" PERSON' >

<id name="id" colum="PERSON |D'>...</id>

<j oi n tabl e=" ADDRESS" >
<key col um="ADDRESS | D'/ >
<property nane="address"/>
<property name="zip"/>
<property nane="country"/>
</j oi n>

This feature is often only useful for legacy data models, we recommend fewer tables than classes and a fine-
grained domain model. However, it is useful for switching between inheritance mapping strategies in a single
hierarchy, as explained later.

NHibernate 5.1 53

Basic O/R Mapping

5.1.20. map, set, list, bag

Collections are discussed | ater.

5.1.21. import

Suppose your application has two persistent classes with the same name, and you don't want to specify the fully
qualified name in NHibernate queries. Classes may be "imported” explicitly, rather than relying upon aut o-
i nport="true".Youmay evenimport classes and interfaces that are not explicitly mapped.

<i nport class="System Cbject" rename="Universe"/>

<i nport
cl ass="d assNane" (1)
r enanme=" Shor t Nane" (2)
/>

(1) class: Thefully qualified class name of any .NET class, including its assembly name.
(2) renane (optional - defaults to the unqualified class name): A name that may be used in the query lan-

guage.
5.2. NHibernate Types

5.2.1. Entities and values

To understand the behaviour of various .NET language-level objects with respect to the persistence service, we
need to classify them into two groups:

An entity exists independently of any other objects holding references to the entity. Contrast this with the usual
.NET model where an unreferenced object is garbage collected. Entities must be explicitly saved and deleted
(except that saves and deletions may be cascaded from a parent entity to its children). Thisis different from the
ODMG model of object persistence by reachability - and corresponds more closely to how application objects
are usually used in large systems. Entities support circular and shared references. They may a so be versioned.

An entity's persistent state consists of references to other entities and instances of value types. Values are prim-
itives, collections, components and certain immutable objects. Unlike entities, values (in particular collections
and components) are persisted and deleted by reachability. Since value objects (and primitives) are persisted
and deleted along with their containing entity they may not be independently versioned. Values have no inde-
pendent identity, so they cannot be shared by two entities or collections.

All NHibernate types except collections support null semantics if the .NET type is nullable (i.e. not derived
from Syst em Val ueType).

Up until now, we've been using the term "persistent class' to refer to entities. We will continue to do that.
Strictly speaking, however, not all user-defined classes with persistent state are entities. A component is a user
defined class with value semantics.

5.2.2. Basic value types

The basic types may be roughly categorized into three groups - System Val ueType types, System Cbj ect
types, and Syst em Qbj ect types for large objects. Just like Columns for System.VaueType types can handle

NHibernate 5.1 54

Basic O/R Mapping

nul I values only if the entity property is properly typed with a Nul | abl e<T>. Otherwise nul I will be replaced
by the default value for the type when reading, and then will be overwritten by it when persisting the entity, po-
tentialy leading to phantom updates.

Table 5.3. System.ValueType Mapping Types

NHibernate Type .NET Type Database Type Remarks
Ansi Char Syst em Char Db- t ype="Ansi Char" must
Type. Ansi Stri ngFi xedL be specified.
ength - 1 char
Bool ean Syst em Bool ean DbType. Bool ean Default when no t ype at-
tribute specified.
Byt e System Byt e DbType. Byt e Default when no t ype at-
tribute specified.
Char Syst em Char Db- Default when no t ype at-
Type. StringFi xedLengt tribute specified.
h - 1 char
Currency Syst em Deci mal DbType. Currency type="Currency" must
be specified.
Dat e Syst em Dat eTi ne DbType. Dat e type="Date" must be
specified.
Dat eTi ne Syst em Dat eTi ne DbType. DateTime / Db- Default when no type at-
Type. Dat eTi ne2(1) tribute specified. Does no
longer ignore fractional
seconds since NHibernate
v5.0.
Dat eTi neNoMs Syst em Dat eTi ne DbType. DateTinme / Db- type="DateTi meNoNs"
Type. Dat eTi me2(1) must be specified. Ig-
nores fractional seconds.
Available since NHibern-
ate v5.0.
Dat eTi me2 Syst em Dat eTi ne DbType. Dat eTi ne2 t ype="Dat eTi me2" must

Dat eTi meCF f set

DbTi mest anmp

Deci nal

Syst em Dat eTi meCX f set

Syst em Dat eTi ne

Syst em Deci mal

DbType. Dat eTi neCf f set

DbType. DateTinme / Db-

Type. Dat eTi ne2(1)

DbType. Deci mal

be specified. Obsolete
since NHibernate v5.0,
use Dat eTi me instead.

Default when no t ype at-
tribute specified.

type="DbTi nest anp”
must be specified. When
used as a version field,
uses the database's cur-
rent time retrieved in ded-
icated queries, rather than
the client's current time.

Default when no t ype at-
tribute specified.

NHibernate 5.1

55

Basic O/R Mapping

NHibernate Type

.NET Type

Database Type

Remarks

Doubl e Syst em Doubl e DbType. Doubl e Default when no t ype at-
tribute specified.

Qui d System Gui d DbType. Gui d Default when no t ype at-
tribute specified.

I nt 16 System | nt 16 DbType. | nt 16 Default when no type at-
tribute specified.

| nt 32 System I nt 32 DbType. | nt 32 Default when no t ype at-
tribute specified.

I nt 64 System I nt 64 DbType. | nt 64 Default when no t ype at-

tribute specified.

Local Dat eTi ne

Local Dat eTi neNoMs

Per si st ent Enum

Syst em Dat eTi me

Syst em Dat eTi ne

A Syst em Enum

DbType. DateTime / Db-
Type. Dat eTi ne2(1)

DbType. DateTime / Db-
Type. Dat eTi ne2(1)

The DbType for the under-
lying value.

type="Local Dat eTi ne"
must be specified. En-
sures the Dat eTi neki nd is
set to Dat eTi ne-
Ki nd. Local . Throws if
set with a date having an-
other kind. Does no
longer ignore fractional
seconds since NHibernate
v5.0.

type="Local Dat eTi neNo
M must be specified.
Similar to Local Dat eTi e
but ignores fractional
seconds. Available since
NHibernate v5.0.

Do not specify
t ype="Per si st ent Enunf
in the mapping. Instead
specify the Assembly
Qualified Name of the
Enum or let NHibernate
use Reflection to "guess"
the Type. The Underly-
ingType of the Enum is
used to determine the cor-
rect DoType.

SByt e Syst em SByt e DbType. SByt e Default when no type at-
tribute specified.

Single System Si ngl e DbType. Si ngl e Default when no t ype at-
tribute specified.

Ti cks Syst em Dat eTi ne DbType. | nt 64 type="Ticks" must be
specified.

Ti me Syst em Dat eTi ne DbType. Ti ne type="Time" must be
specified.

NHibernate 5.1 56

Basic O/R Mapping

NHibernate Type .NET Type Database Type Remarks
Ti meAsTi meSpan Syst em Ti neSpan DbType. Ti e type="Ti neAsTi meSpan"
must be specified.
Ti meSpan Syst em Ti neSpan DbType. | nt 64 Default when no type at-
tribute specified.
Ti nest anp System Dat eTi me DbType. DateTime / Db- Obsolete, its Timestanp
Type. Dat eTi ne2(1) alias will be remapped to
Dat eTi ne in a future ver-
sion.
TrueFal se Syst em Bool ean Db- type="TrueFal se" must
Type. Ansi Stri ngFi xedL be specified.
ength - 1 char either 'T'
or'F
U nt 16 System Ul nt 16 DbType. Ul nt 16 Default when no t ype at-
tribute specified.
Ul nt 32 System Ul nt 32 DbType. Ul nt 32 Default when no t ype at-
tribute specified.
Ul nt 64 Syst em Ul nt 64 DbType. Ul nt 64 Default when no t ype at-
tribute specified.
Ut cDat eTi ne Syst em Dat eTi ne DbType. DateTime / Db- Ensures the DateTime-

Ut cDat eTi meNoMs

YesNo

Syst em Dat eTi nme

Syst em Bool ean

Type. Dat eTi me2(1)

DbType. DateTime / Db-
Type. Dat eTi ne2(1)

Db-
Type. Ansi Stri ngFi xedL
ength - 1 char either "Y'
or 'N'

Kind is set to Dat eTi me-
Kind. Uc. Throws if set
with a date having anoth-
er kind. Does no longer
ignore fractional seconds
since NHibernate v5.0.

type="U cDat eTi meNoMs
" must be specified. Sim-
ilar to UtcDateTime but
ignores fractiona
seconds. Available since
NHibernate v5.0.

type="YesNo" must be
specified.

(1) Since NHibernate v5.0 and if the dialect supports it, DbType. DateTine2 is used instead of Db-
Type. Dat eTi me. Thismay be disabled by setting sql _t ypes. keep_dat eti me tO t r ue.

Table 5.4. System.Object Mapping Types

NHibernate Type

.NET Type

Database Type

Remarks

Ansi String

System String

DbType. Ansi String

type="Ansi String" must
be specified.

NHibernate 5.1

57

Basic O/R Mapping

NHibernate Type .NET Type Database Type Remarks
Cul turel nfo Sys- DbType. String - 5 chars Default when no type at-
tem d obal i zation. cul | for culture tribute specified.
turelnfo
Bi nary Syst em Byt e[] DbType. Bi nary Default when no t ype at-
tribute specified.
Type Syst em Type DbType. String holding Default when no type at-
Assembly Qualified | tribute specified.
Name.
String System String DbType. String Default when no t ype at-
tribute specified.
Uri System Uri DbType. String Default when no t ype at-

Table5.5. Large Object Mapping Types

NHibernate Type

NET Type

Database Type

tribute specified.

Remarks

StringC ob System String DbType. String type="Stringd ob" must
be specified. Entire field
isread into memory.

Bi nar yBI ob System Byt e[] DbType. Bi nary t ype="Bi nar yBl ob" must

Serializable

XDoc

Xm Doc

Any System bj ect that
is marked with Seridiz-
ableAttribute.

Sys-
tem Xml . Li ng. XDocunen
t

Sys-
tem Xm . Xm Docunent

DbType. Bi nary

DbType. Xm

DbType. Xm

be specified. Entire field
isread into memory.

type="Serial i zabl e"
should be specified. This
is the fallback type if no
NHibernate Type can be
found for the Property.

Default when no t ype at-
tribute specified. Entire
field isread into memory.

Default when no type at-
tribute specified. Entire
field isread into memory.

NHibernate supports some additional type names for compatibility with Java's Hibernate (useful for those com-
ing over from Hibernate or using some of the tools to generate hbm xm files). A type="integer" oOr
type="int" will map to an I nt 32 NHibernate type, t ype="short" to an I nt 16 NHibernateType. To see all of
the conversions you can view the source of static constructor of the class NHi ber nat e. Type. TypeFact ory.

Default NHibernate types used when no type attribute is specified can be overridden by using the NHi ber n-
at e. Type. TypeFact ory. Regi st er Type static method before configuring and building session factories.

5.2.3. Custom value types

NHibernate 5.1

58

Basic O/R Mapping

Itisrelatively easy for developers to create their own value types. For example, you might want to persist prop-
erties of type I nt 64 to VARCHAR columns. NHibernate does not provide a built-in type for this. But custom types
are not limited to mapping a property (or collection element) to a single table column. So, for example, you
might have a property Name { get; set; } of type String that is persisted to the columns FI RST_NAME, | NI -
TI AL, SURNANE.

To implement a custom type, implement either NHi bernate. User Types. | User Type OF NHi bern-
ate. User Types. | Conposi t eUser Type and declare properties using the fully qualified name of the type. Check
Out NHi ber nat e. Domai nhbdel . Doubl eSt ri ngType to see the kind of things that are possible.

<property nane="TwoStrings"
t ype="NHi ber nat e. Domai nModel . Doubl eSt ri ngType, NH ber nat e. Donai nMbdel " >
<col um nane="first_string"/>
<col um name="second_string"/>
</ property>

Notice the use of <col um> tags to map a property to multiple columns.

The | Conposi t eUser Type, | EnhancedUser Type, | Nul | abl eUser Type, | User Col | ecti onType, and | User Ver -
si onType interfaces provide support for more specialized uses.

Y ou may even supply parametersto an | User Type in the mapping file. To do this, your | User Type must imple-
ment the NHi ber nat e. User Types. | Par anet eri zedType interface. To supply parameters to your custom type,
you can use the <t ype> element in your mapping files.

<property nane="priority">
<type nane="MConpany. User Types. Def aul t Val uel nt eger Type" >
<par am name="def aul t " >0</ par an>
</type>
</ property>

The | User Type can now retrieve the value for the parameter named def aul t from the 1 Di cti onary object
passed to it.

If you use a certain User Type very often, it may be useful to define a shorter name for it. You can do this using
the <t ypedef > element. Typedefs assign a name to a custom type, and may also contain a list of default para-
meter values if the type is parameterized.

<typedef class="M/Conpany. User Types. Def aul t Val uel nt eger Type" nanme="default_zero">
<par am name="def aul t " >0</ par an>
</typedef >

<property nanme="priority" type="default_zero"/>

It is also possible to override the parameters supplied in a typedef on a case-by-case basis by using type para-
meters on the property mapping.

Even though NHibernate's rich range of built-in types and support for components means you will very rarely
need to use a custom type, it is nevertheless considered good form to use custom types for (non-entity) classes
that occur frequently in your application. For example, a Monet ar yAmount class is a good candidate for an
| Conposi t eUser Type, even though it could easily be mapped as a component. One motivation for this is ab-
straction. With a custom type, your mapping documents would be future-proofed against possible changes in
your way of representing monetary values.

5.2.4. Any type mappings

NHibernate 5.1 59

Basic O/R Mapping

There is one further type of property mapping. The <any> mapping element defines a polymorphic association
to classes from multiple tables. This type of mapping always requires more than one column. The first column
holds the type of the associated entity. The remaining columns hold the identifier. It is impossible to specify a
foreign key constraint for this kind of association, so thisis most certainly not meant as the usual way of map-
ping (polymorphic) associations. You should use this only in very special cases (eg. audit logs, user session
data, etc).

<any name="AnyEntity" id-type="I|nt64" neta-type="Eg. Custom C ass2Tabl enaneType" >
<col um nane="t abl e_nane"/>
<col um nane="id"/>

</ any>

The net a- t ype attribute lets the application specify a custom type that maps database column values to persist-
ent classes which have identifier properties of the type specified by i d- t ype. If the meta-type returns instances
of system Type, nothing else is required. On the other hand, if it is a basic type like St ri ng or Char, you must
specify the mapping from values to classes.

<any name="AnyEntity" id-type="Int64" neta-type="String">
<met a- val ue val ue="TBL_AN MAL" cl ass="Ani mal "/>
<net a- val ue val ue="TBL_HUMAN' cl ass="Human"/>
<nmet a-val ue val ue="TBL_ALI EN' cl ass="Alien"/>
<col um nane="t abl e_nane"/>
<col um nane="id"/>

</ any>
<any
name="Pr oper t yNanme" (1)
i d-type="idtypenane" (2)
nmet a- t ype=" et at ypenane" (3)
cascade="none| al | | save- updat e" (4)
access="fiel d| property| nosetter| C assNane" (5)
optimstic-lock="true|fal se" (6)
>
<meta-value ... />
<meta-value ... />
<colum />
<colum />
</ any>

(1) nane: the property name.

(2) id-type:theidentifier type.

(3) nmeta-type (optional - defaultsto Type): atype that maps Syst em Type to a single database column or, al-
ternatively, atype that is allowed for a discriminator mapping.

(4) cascade (Optional - defaultsto none): the cascade style.

(5) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

(6) optinistic-1ock (optiona - defaultsto t rue): Specifies that updates to this property do or do not require
acquisition of the optimistic lock. In other words, define if a version increment should occur if this prop-
erty isdirty.

5.3. SQL quoted identifiers

Y ou may force NHibernate to quote an identifier in the generated SQL by enclosing the table or column name
in back-ticks in the mapping document. NHibernate will use the correct quotation style for the SQL Di al ect
(usually double quotes, but brackets for SQL Server and back-ticks for MySQL).

NHibernate 5.1 60

Basic O/R Mapping

<cl ass nanme="Linelten table=""Line Item">

<id name="1d" colum=""Item |d "/><generator class="assigned"/></id>
<property nanme="ItemNunber" colum=""Item# "/>
</ cl ass>

Quoting column identifiers is required if a table contains two columns differing only by case. Ensure you use
consistent casing when quoting identifiers.

5.4. Modular mapping files

It is possible to define subcl ass and j oi ned- subcl ass mappings in separate mapping documents, directly be-
neath hi ber nat e- mappi ng. This allows you to extend a class hierarchy just by adding a new mapping file. You
must specify an ext ends attribute in the subclass mapping, naming a previously mapped superclass. Use of this
feature makes the ordering of the mapping documents important!

<hi ber nat e- mappi ng>
<subcl ass nane="Eg. Subcl ass. Donesti cCat, Eg"
ext ends="Eg. Cat, Eg" discrimn nator-val ue="D"'>
<property nane="nane" type="string"/>
</ subcl ass>
</ hi ber nat e- mappi ng>

5.5. Generated Properties

Generated properties are properties which have their values generated by the database. Typically, NHibernate
applications needed to Ref r esh objects which contain any properties for which the database was generating val-
ues. Marking properties as generated, however, lets the application delegate this responsibility to NHibernate.
Essentialy, whenever NHibernate issues an SQL INSERT or UPDATE for an entity which has defined gener-
ated properties, it immediately issues a select afterwards to retrieve the generated values.

Properties marked as generated must additionally be non-insertable and non-updatable. Only Section 5.1.8,
“version (optional)”, Section 5.1.9, “timestamp (optional)”, and Section 5.1.10, “property” can be marked as
generated.

never (the default) - means that the given property value is not generated within the database.

i nsert - states that the given property value is generated on insert, but is not regenerated on subsequent up-
dates. Things like created-date would fall into this category. Note that even though Section 5.1.8, “version
(optional)” and Section 5.1.9, “timestamp (optional)” properties can be marked as generated, this option is not
available there...

al ways - states that the property value is generated both on insert and on update.

5.6. Auxiliary Database Objects

Allows CREATE and DROP of arbitrary database objects, in conjunction with NHibernate's schema evolution
tools, to provide the ability to fully define a user schema within the NHibernate mapping files. Although de-
signed specifically for creating and dropping things like triggers or stored procedures, really any SQL com-
mand that can be run via a DbConmand. Execut eNonQuery() method is valid here (ALTERS, INSERTS, etc).
There are essentialy two modes for defining auxiliary database objects.

NHibernate 5.1 61

Basic O/R Mapping

Thefirst mode isto explicitly list the CREATE and DROP commands out in the mapping file:

<nhi ber nat e- mappi ng>

<dat abase- obj ect >
<creat e>CREATE TRI GGER ny_trigger ...</create>
<dr op>DROP TRI GGER ny_tri gger </ dr op>
</ dat abase- obj ect >
</ nhi ber nat e- mappi ng>

The second mode is to supply a custom class which knows how to construct the CREATE and DROP com-
mands. This custom class must implement the NHi ber nat e. Mappi ng. | Auxi | i ar yDat abasebj ect interface.

<hi ber nat e- mappi ng>

<dat abase- obj ect >
<definition class="MTriggerDefinition, M/Assenbly"/>
</ dat abase- obj ect >
</ hi ber nat e- mappi ng>

Y ou may also specify parameters to be passed to the database object:

<hi ber nat e- mappi ng>

<dat abase- obj ect >
<definition class="MTriggerDefinition, M/Assenbly">
<par am nane="par anet er Nane" >par anet er Val ue</ par an»
</ definition>
</ dat abase- obj ect >
</ hi ber nat e- mappi ng>

NHibernate will call | Auxi | i ar yDat abasebj ect . Set Par anet er Val ues passing it a dictionary of parameter
names and values.

Additionally, these database aobjects can be optionally scoped such that they only apply when certain dialects
are used.

<hi ber nat e- mappi ng>

<dat abase- obj ect >
<definition class="MTriggerDefinition"/>
<di al ect - scope nane="NHi bernate. Di al ect. Oracl e9i Di al ect"/ >
<di al ect - scope nane="NHi bernate. Di al ect. Oracl e8i Di al ect"/ >
</ dat abase- obj ect >
</ hi ber nat e- mappi ng>

NHibernate 5.1 62

Chapter 6. Collection Mapping

6.1. Persistent Collections

NHibernate requires that persistent collection-valued fields be declared as a generic interface type, for example:

public class Product

{
public | Set<Part> Parts { get; set; } = new HashSet<Part>();

public string Serial Nunmber { get; set; }

The actual interface might be System Col | ecti ons. Generic. | Col | ection<T>, Sys-
tem Col | ections. Generic. | Li st<T>, System Col | ections. Generic.|Dictionary<K, V>, Sys-
tem Col | ections. Generic. | Set <T> or ... anything you like! (Where "anything you like" means you will have
to write an implementation of NHi ber nat e. User Type. | User Col | ecti onType.)

Notice how we initialized the instance variable with an instance of HashSet <T>. Thisis the best way to initial-
ize collection valued properties of newly instantiated (non-persistent) instances. When you make the instance
persistent - by calling save(), for example - NHibernate will actually replace the HashSet <T> with an instance
of NHibernate's own implementation of | set <T>. Watch out for errorslike this:

Cat cat = new DonesticCat();
Cat kitten = new DonesticCat();

| Set <Cat > kittens = new HashSet <Cat >();

kittens. Add(kitten);

cat.Kittens = kittens;

sessi on. Save(cat);

kittens = cat.Kittens; //Okay, kittens collection is an | Set
HashSet <Cat > hs = (HashSet<Cat>) cat.Kittens; //Error!

Callection instances have the usual behavior of value types. They are automatically persisted when referenced
by a persistent object and automatically deleted when unreferenced. If a collection is passed from one persistent
object to another, its elements might be moved from one table to another. Two entities may not share a refer-
ence to the same collection instance. Due to the underlying relational model, collection-valued properties do
not support null value semantics; NHibernate does not distinguish between a null collection reference and an
empty collection.

Y ou shouldn't have to worry much about any of this. Just use NHibernate's collections the same way you use
ordinary .NET collections, but make sure you understand the semantics of bidirectional associations (discussed
later) before using them.

Collection instances are distinguished in the database by a foreign key to the owning entity. This foreign key is
referred to as the collection key . The collection key is mapped by the <key> element.

Collections may contain ailmost any other NHibernate type, including all basic types, custom types, entity types
and components. This is an important definition: An object in a collection can either be handled with "pass by
value" semantics (it therefore fully depends on the collection owner) or it can be a reference to another entity
with an own lifecycle. Collections may not contain other collections. The contained type is referred to as the
collection element type. Collection elements are mapped by <elenent>, <conposite-elenment>,
<one-t 0- many>, <many-t o- many> Of <many-t o- any>. The first two map elements with value semantics, the oth-
er three are used to map entity associations.

NHibernate 5.1 63

Collection Mapping

All collection types except | Set and bag have an index column - a column that mapsto an array or | Li st index
or 1 Di ctionary key. Theindex of an 1 bi cti onary may be of any basic type, an entity type or even a composite
type (it may not be a collection). The index of an array or list is aways of type I nt 32. Indexes are mapped us-
ing‘d ndex>, <i ndex- many-t o- many>, <conposi t e-i ndex> OrI <i ndex- many-t o- any>.

There are quite a range of mappings that can be generated for collections, covering many common relational
models. We suggest you experiment with the schema generation tool to get a feeling for how various mapping
declarations transl ate to database tables.

6.2. Mapping a Collection

Collections are declared by the <set>, <list>, <map>, <bag>, <array> and <primitive-array> elements.
<map> IS representative:

<map

name="pr opert yNanme" (1)
t abl e="t abl e_nane" (2)
schema="schena_nane" (3)
| azy="true| fal se| extra" (4)
i nverse="true|fal se" (5)
cascade="al | | none| save- updat e| del et e| al | - del et e- or phan" (6)
sort ="unsorted| nat ural | conpar at or d ass" (7)
or der - by="col utm_nane asc| desc" (8)
where="arbitrary sql where condition" (9)
fetch="sel ect|j oi n" (10)
bat ch-si ze="N" (12)
access="fi el d| property| assNane" (12)
optimstic-lock="true|fal se" (13)
generic="true|fal se" (14)
>
<key [>
<index [>
<elenent />
</ map>

(1) nane the collection property name

(2) table (optional - defaults to property name) the name of the collection table (not used for one-to-many
associations)

(3) schema (optional) the name of atable schemato override the schema declared on the root element

(4) lazy (optional - defaultsto t rue) may be used to disable lazy fetching and specify that the association is
aways eagerly fetched. Using extra fetches only the elements that are needed - see Section 20.1,
“Fetching strategies’” for more information.

(5) inverse (optiona - defaultsto f al se) mark this collection as the "inverse" end of a bidirectional associ-
ation

(6) cascade (optional - defaultsto none) enable operations to cascade to child entities

(7) sort (optional) specify asorted collection with nat ural sort order, or a given comparator class

(8) order-by (optional) specify atable column (or columns) that define the iteration order of the I Di cti on-
ary, | Set or bag, together with an optional asc or desc

(9) where (optional) specify an arbitrary SQL WHERE condition to be used when retrieving or removing the
collection (useful if the collection should contain only a subset of the available data)

(10) fetch (optiona) Choose between outer-join fetching and fetching by sequential select.

(11) bat ch-si ze (optional, defaultsto 1) specify a"batch size" for lazily fetching instances of this collection.

(12) access (optional - defaults to property): The strategy NHibernate should use for accessing the property
value.

(13) optimistic-1ock (optiona - defaultsto t r ue): Species that changes to the state of the collection resultsin

NHibernate 5.1 64

Collection Mapping

increment of the owning entity's version. (For one to many associations, it is often reasonable to disable
this setting.)

(14) generic (optional, obsolete): Choose between generic and non-generic collection interfaces. But currently
NHibernate only supports generic collections.

The mapping of an I Li st or array requires a separate table column holding the array or list index (thei in
foo[i]). If your relational model doesn't have an index column, e.g. if you're working with legacy data, use an
unordered | Set instead. This seems to put people off who assume that | Li st should just be a more convenient
way of accessing an unordered collection. NHibernate collections strictly obey the actual semantics attached to
thel set, I List and1Dictionary interfaces. I Li st elementsdon't just spontaneously rearrange themselves!

On the other hand, people who planned to use the I Li st to emulate bag semantics have a legitimate grievance
here. A bag is an unordered, unindexed collection which may contain the same element multiple times. The
NET collections framework lacks an | Bag interface, hence you have to emulate it with an 1 Li st . NHibernate
lets you map properties of type 1 Li st or | Col | ecti on with the <bag> element. Note that bag semantics are not
really part of the 1 ol I ection contract and they actually conflict with the semantics of the I Li st contract
(however, you can sort the bag arbitrarily, discussed later in this chapter).

Note: Large NHibernate bags mapped with i nver se="f al se" are inefficient and should be avoided; NHibern-
ate can't create, delete or update rows individually, because there is no key that may be used to identify an indi-
vidual row.

6.3. Collections of Values and Many-To-Many Associations

A collection table is required for any collection of values and any collection of references to other entities
mapped as a many-to-many association (the natural semantics for a .NET collection). The table requires
(foreign) key column(s), element column(s) and possibly index column(s).

The foreign key from the collection table to the table of the owning classis declared using a <key> element.

<key col um="col um_nane"/ >

(1) col um (required): The name of the foreign key column.

For indexed collections like maps and lists, we require an <i ndex> element. For lists, this column contains se-
quential integers numbered from zero. Make sure that your index really starts from zero if you have to deal with
legacy data. For maps, the column may contain any values of any NHibernate type.

<i ndex
col um="col unm_nane" (1)
type="t ypenane" (2)
/>

(1) col um (required): The name of the column holding the collection index values.
(2) type (optional, defaultsto I nt 32): The type of the collection index.

Alternatively, amap may be indexed by objects of entity type. We use the <i ndex- many- t o- many> element.

<i ndex- many-t o- many
col um="col um_nange" (1)
cl ass="d assNane" (2)
/>

(1) col um (required): The name of the foreign key column for the collection index values.
(2) class (required): The entity class used as the collection index.

NHibernate 5.1 65

Collection Mapping

For a collection of values, we use the <el enent > tag.

<el enent
col um="col umm_nane" (1)
type="t ypenane" (2)
/>

(1) col um (required): The name of the column holding the collection element values.
(2) type (required): The type of the collection element.

A collection of entities with its own table corresponds to the relational notion of many-to-many association. A
many to many association is the most natural mapping of a.NET collection but is not usually the best relational
model.

<many- t o- many

col um="col unm_nane" (1)
cl ass="d assNane" (2)
fetch="j oi n| sel ect" (3)
not - f ound="i gnor e| excepti on" (4)

/>

(1) col um (required): The name of the element foreign key column.

(2) class (required): The name of the associated class.

(3) fetch (optional, defaults to j oi n): enables outer-join or sequential select fetching for this association.
Thisisaspecia case; for full eager fetching (in asingle SELECT) of an entity and its many-to-many rela-
tionships to other entities, you would enable join fetching not only of the collection itself, but also with
this attribute on the <many- t o- many> nested element.

(4) not-found (optional - defaultsto except i on): Specifies how foreign keys that reference missing rows will
be handled: i gnor e will treat a missing row as a null association.

Some examples, first, a set of strings:

<set name="Nanes" tabl e=" NAMES" >

<key col um="GROUPI D"/ >

<el enent col umm="NAME" type="String"/>
</set>

A bag containing integers (with an iteration order determined by the or der - by attribute):

<bag nane="Si zes" tabl e="SIZES" order-by="S| ZE ASC'>
<key col um="0OMNER'/ >
<el enent col um="SI ZE" type="Int32"/>

</ bag>

An array of entities - in this case, a many to many association (note that the entities are lifecycle objects, cas-
cade="al | "):

<array nane="Foos" tabl e="BAR FOOS" cascade="al | ">
<key colum="BAR | D'/ >

<i ndex col um="1"/>
<many-to- many col um="FOO_| D' cl ass="Eg. Foo, Eg"/>
</array>

A map from string indices to dates:

<map name="Hol i days" tabl e="holidays" schema="dbo" order-by="hol nane asc">
<key col um="id"/>
<i ndex col um="hol _name" type="String"/>
<el enent col um="hol _date" type="Date"/>

</ map>

NHibernate 5.1 66

Collection Mapping

A list of components (discussed in the next chapter):

<l i st name="Car Conponents" tabl e="car_conponents">
<key col um="car _i d"/>
<i ndex col um="posn"/>
<conposite-el ement cl ass="Eg. Car. Car Conponent ">
<property nane="Price" type="float"/>
<property nane="Type" type="Eg. Car. Conponent Type, Eg"/>
<property nane="Seri al Nunber" col um="serial _no" type="String"/>
</ conposi t e- el enent >
</list>

6.4. One-To-Many Associations

A one to many association links the tables of two classes directly, with no intervening collection table. (This
implements a one-to-many relational model.) This relational model loses some of the semantics of .NET collec-
tions:

* No null values may be contained in a dictionary, set or list
¢ Aninstance of the contained entity class may not belong to more than one instance of the collection
« Aninstance of the contained entity class may not appear at more than one value of the collection index

An association from Foo to Bar requires the addition of a key column and possibly an index column to the table
of the contained entity class, Bar . These columns are mapped using the <key> and <i ndex> elements described
above.

The <one- t o- many> tag indicates a one to many association.

<one-t o- many
cl ass="d assNange" (1)
not - f ound="i gnor e| excepti on" (2)
/>

(1) class (required): The name of the associated class.
(2) not-found (optional - defaultsto except i on): Specifies how foreign keys that reference missing rows will
be handled: i gnor e will treat amissing row as a null association.

Example:

<set nane="Bars">
<key colum="foo_id"/>
<one-to-many cl ass="Eg. Bar, Eg"/>
</set>

Notice that the <one-t o- many> element does not need to declare any columns. Nor isit necessary to specify the
t abl e name anywhere.

Very Important Note: If the <key> column of a <one-t o- many> association is declared NOT NuLL, NHibernate
may cause constraint violations when it creates or updates the association. To prevent this problem, you must
use a hidirectional association with the many valued end (the set or bag) marked asi nverse="true". See the
discussion of bidirectional associations later in this chapter.

6.5. Lazy Initialization

Coallections (other than arrays) may be lazily initialized, meaning they load their state from the database only

NHibernate 5.1 67

Collection Mapping

when the application needs to access it. Initialization happens transparently to the user so the application would
not normally need to worry about this (in fact, transparent lazy initialization is the main reason why NHibernate
needs its own collection implementations). However, if the application tries something like this:

I Di ctionary<string, int> pernissions;
using (s = sessions. OpenSession())
using (Il Transaction tx = sessions. Begi nTransacti on())

{

}

var u = s. Load<User>(userld);
perm ssi ons = u. Permni ssions;
tx. Commit();

int accessLevel = perm ssions["accounts"]; // Error!

It could be in for a nasty surprise. Since the permissions collection was not initialized when the | Sessi on was
committed, the collection will never be able to load its state. The fix is to move the line that reads from the col-
lection to just before the commit. (There are other more advanced ways to solve this problem, however.)

Alternatively, use a non-lazy collection. Since lazy initialization can lead to bugs like that above, non-laziness
is the default. However, it is intended that lazy initialization be used for almost all collections, especially for
collections of entities (for reasons of efficiency).

Exceptions that occur while lazily initializing a collection are wrapped in aLazyl ni ti al i zat i onExcept i on.

Declare alazy collection using the optional | azy attribute:

<set name="Nanmes" tabl e="NAMES" | azy="true">

<key col um="group_id"/>
<el ement col um="NAME" type="String"/>

</ set >

In some application architectures, particularly where the code that accesses data using NHibernate, and the
code that uses it are in different application layers, it can be a problem to ensure that the | Sessi on is open when
acollectionisinitialized. There are two basic ways to deal with thisissue:

In a web-based application, an event handler can be used to close the | Sessi on only at the very end of a
user reguest, once the rendering of the view is complete. Of course, this places heavy demands upon the
correctness of the exception handling of your application infrastructure. It is vitally important that the | Ses-
si on is closed and the transaction ended before returning to the user, even when an exception occurs during
rendering of the view. The event handler has to be able to access the | Sessi on for this approach. We re-
commend that the current | Sessi on is stored in the Htt pCont ext . | t ems collection (see chapter 1, Sec-
tion 1.4, “Playing with cats’, for an example implementation).

In an application with a separate business tier, the business logic must "prepare” al collections that will be
needed by the web tier before returning. This means that the business tier should load all the data and return
all the data already initialized to the presentation/web tier that is required for a particular use case. Usually,
the application calls NHi bernateUti | . I nitialize() for each collection that will be needed in the web tier
(this call must occur before the session is closed) or retrieves the collection eagerly using a NHibernate
query with a FETCH clause.

Y ou may also attach a previoudy loaded object to a new | Sessi on with Updat e() or Lock() before access-
ing uninitialized collections (or other proxies). NHibernate can not do this automatically, as it would intro-
duce ad hoc transaction semantics!

You can usethe Creat eFi | t er () method of the NHibernate 1Session API to get the size of a collection without

NHibernate 5.1 68

Collection Mapping

initializing it:

var count ='s
.CreateFilter(collection, "select count(*)")
. Uni queResul t <l ong>() ;

CreateFilter() is aso used to efficiently retrieve subsets of a collection without needing to initialize the
whole collection.

6.6. Sorted Collections

NHibernate supports collections implemented by System Col | ecti ons. Generi c. Sort edLi st <T> and Sys-
tem Col | ections. Generi c. Sort edSet <T>. Y ou must specify acomparer in the mapping file:

<set nanme="Aliases" tabl e="person_aliases" sort="natural ">
<key col umm="person"/>
<el ement col um="nanme" type="String"/>

</ set>

<map nanme="Hol i days" sort="M. Cust om Hol i dayConparer, MAssenbly" |azy="true">
<key col um="year _id"/>
<i ndex col um="hol _nanme" type="String"/>
<el enent col um="hol _date" type="Date"/>

</ map>

Allowed values of the sort attribute are unsorted, natural and the name of a class implementing Sys-
tem Col | ections. Generi c. | Conpar er <T>.

If you want the database itself to order the collection elements use the or der - by attribute of set, bag or map
mappings. This performs the ordering in the SQL query, not in memory.

Setting the or der - by attribute tells NHibernate to use 1 esi . Col | ecti ons. Generi c. Li nkedHashSet class in-
ternally for sets, maintaining the order of the elements. It is not supported on maps.

<set nanme="Aliases" tabl e="person_aliases" order-by="nane asc">
<key col um="person"/>
<el enent col um="nane" type="String"/>

</ set>

<map nanme="Hol i days" order-by="hol _date, hol _name" |azy="true">
<key col um="year _id"/>
<i ndex col um="hol _nanme" type="String"/>
<el ement col um="hol _date type="Date"/>

</ map>

Note that the value of the or der - by attribute is an SQL ordering, not aHQL ordering!
Associations may even be sorted by some arbitrary criteriaat runtime using acreatefFil ter ().

sortedUsers = s
.CreateFilter(group. Users, "order by this.Nanme")
. Li st<User>();

6.7. Using an <i dbag>

If you've fully embraced our view that composite keys are a bad thing and that entities should have synthetic
identifiers (surrogate keys), then you might find it a bit odd that the many to many associations and collections

NHibernate 5.1 69

Collection Mapping

of values that we've shown so far all map to tables with composite keys! Now, this point is quite arguable; a
pure association table doesn't seem to benefit much from a surrogate key (though a collection of composite val-
ues might). Nevertheless, NHibernate provides a feature that allows you to map many to many associations and
collections of values to atable with a surrogate key.

The <i dbag> element lets you map aLi st (Or Col | ecti on) with bag semantics.

<i dbag name="Lovers" tabl e="LOVERS" |azy="true">
<col l ection-id colum="1D" type="Int64">
<generator class="hilo"/>
</coll ection-id>
<key col um="PERSONL"/ >
<many-to- many col um="PERSON2" cl ass="Eg. Person" fetch="join"/>
</ i dbag>

As you can see, an <i dbag> has a synthetic id generator, just like an entity class! A different surrogate key is
assigned to each collection row. NHibernate does not provide any mechanism to discover the surrogate key
value of a particular row, however.

Note that the update performance of an <i dbag> is much better than aregular <bag>! NHibernate can locate in-
dividual rows efficiently and update or delete them individually, just like alist, map or set.

Asof version 2.0, the nat i ve identifier generation strategy is supported for <i dbag> collection identifiers.

6.8. Bidirectional Associations

A bidirectional association allows navigation from both "ends' of the association. Two kinds of bidirectional
association are supported:

one-to-many
set or bag valued at one end, single-valued at the other

many-to-many
set or bag valued at both ends

Y ou may specify abidirectional many-to-many association simply by mapping two many-to-many associations
to the same database table and declaring one end as inverse (which one is your choice). Here's an example of a
bidirectional many-to-many association from a class back to itself (each category can have many items and
each item can be in many categories):

<cl ass name="NHi ber nat e. Aucti on. Cat egory, NHi bernate. Aucti on">
<id name="1d" colum="1D"/>

<bag nanme="Itens" tabl e="CATEGORY_| TEM' |azy="true">
<key col um="CATEGORY_I D'/ >
<many-t o- many cl ass="NHi bernate. Auction.|ltem NHi bernate. Auction" colum="ITEM ID"'/>
</ bag>
</ cl ass>

<cl ass nanme="NHi bernat e. Auction.|tem NHi bernate. Aucti on">
<id name="id" colum="I1D"'/>

<l-- inverse end -->
<bag nane="categories" tabl e="CATEGORY_I TEM' i nverse="true" |azy="true">
<key colum="ITEM I D"/ >
<many-t o- many cl ass="NHi ber nat e. Aucti on. Cat egory, NHi bernate. Aucti on"
col utm="CATEGORY_I D"/ >

NHibernate 5.1 70

Collection Mapping

</ bag>
</ cl ass>

Changes made only to the inverse end of the association are not persisted. This means that NHibernate has two
representations in memory for every bidirectional association, one link from A to B and another link from B to
A. Thisiseasier to understand if you think about the .NET object model and how we create a many-to-many re-
lationship in C#:

category.|ltens. Add(item; /1 The category now "knows" about the relationship
i tem Cat egori es. Add(cat egory); /1 The item now "knows" about the relationship
sessi on. Update(item; /1l No effect, nothing will be saved!

sessi on. Updat e(cat egory); /1 The relationship will be saved

The non-inverse side is used to save the in-memory representation to the database. We would get an unneces-
sary INSERT/UPDATE and probably even aforeign key violation if both would trigger changes! The sameis
of course also true for bidirectional one-to-many associations.

Y ou may map a bidirectional one-to-many association by mapping a one-to-many association to the same table
column(s) as a many-to-one association and declaring the many-valued end i nver se="true".

<cl ass nane="Eg. Parent, Eg">
<id name="1d" col um="id"/>

<set name="Children" inverse="true" |lazy="true">
<key col um="parent _id"/>
<one-to-many cl ass="Eg. Child, Eg"/>
</ set>
</cl ass>

<cl ass name="Eg. Chi |l d, Eg">
<id name="1d" colum="id"/>

<many-t o-one nane="Parent" class="Eg.Parent, Eg" colum="parent_id"/>
</ cl ass>

Mapping one end of an association with i nver se="true" doesn't affect the operation of cascades, both are dif-
ferent concepts!

6.9. Bidirectional associations with indexed collections

There are some additional considerations for bidirectional mappings with indexed collections (where one end is
represented as a <l i st > or <map>) When using NHibernate mapping files. If thereis a property of the child class
that maps to the index column you can usei nverse="true" on the collection mapping:

<cl ass nane="Parent">
<id name="1d" col um="parent_id"/>

<map nane="Chil dren" inverse="true">
<key col um="parent _id"/>
<map- key col um="nane"
type="string"/>
<one-to-many class="Child"/>
</ map>
</cl ass>

<cl ass nane="Chil d">
<id name="1d" colum="child_id"/>

<property nane="Nane" col um="nane"

NHibernate 5.1 71

Collection Mapping

not-null ="true"/>
<many-t o- one nane="Parent"
cl ass="Parent"
col um="parent _i d"
not-null ="true"/>
</ cl ass>

If there is no such property on the child class, the association cannot be considered truly bidirectional. That is,
there is information available at one end of the association that is not available at the other end. In this case,
you cannot map the collectioni nver se="t r ue" . Instead, you could use the following mapping:

<cl ass nanme="Parent" >
<id name="1d" colum="parent_id"/>

<map nane="Chil dren">
<key col um="parent _id"
not-nul | ="true"/>
<map- key col umm="nane"
type="string"/>
<one-to-many class="Child"/>
</ map>
</ cl ass>

<cl ass name="Chil d">
<id name="1d" colum="child id"/>

<many-t o- one nane="Parent"
cl ass="Parent"
col um="parent _i d"
insert="fal se"
updat e="f al se"
not-null ="true"/>
</ cl ass>

Note that in this mapping, the collection-valued end of the association is responsible for updates to the foreign
key.

6.10. Ternary Associations

There are two possible approaches to mapping a ternary association. One approach is to use composite ele-
ments (discussed below). Another isto usean |1 bi cti onary with an association asits index:

<map nanme="Contracts" |azy="true">
<key col um="enpl oyer _id"/>
<i ndex- many-t o- many col um="enpl oyee_i d" cl ass="Enpl oyee"/ >
<one-to-many class="Contract"/>

</ map>

<map nane="Connections" |azy="true">
<key col um="nodel_id"/>
<i ndex- many-t o- many col um="node2_i d" cl ass="Node"/>
<many-t o- many col um="connection_id" cl ass="Connection"/>
</ map>

6.11. Heterogeneous Associations

The <many-t o- any> and <i ndex- many- t o- any> elements provide for true heterogeneous associations. These
mapping elements work in the same way as the <any> element - and should also be used rarely, if ever.

NHibernate 5.1 72

Collection Mapping

6.12. Collection examples

The previous sections are pretty confusing. So lets ook at an example. This class:

usi ng System
usi ng System Col | ections. Generi c;

namespace Eg

public class Parent

{
public long Id { get; set; }

private |Set<Child> Children { get; set; }

has a collection of Eg. chi | d instances. If each child has at most one parent, the most natural mapping is a one-
to-many association:

<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 2"
assenbl y="Eg" nanmespace="Eg">

<cl ass nane="Parent">
<id name="|d">
<gener ator cl ass="sequence"/>
</id>
<set name="Children" |azy="true">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</set>
</ cl ass>

<cl ass nanme="Chi | d">
<id name="1d">
<gener ator class="sequence"/>
</id>
<property name="Nanme"/>
</ cl ass>

</ hi ber nat e- mappi ng>

This maps to the following table definitions:

create table parent (l1d bigint not null primry key)
create table child (l1d bigint not null primary key, Nane varchar(255), parent_id bigint)
alter table child add constraint childfkO (parent_id) references parent

If the parent is required, use a bidirectional one-to-many association:

<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 2"
assenbl y="Eg" nanespace="Eg">

<cl ass nane="Parent">
<id name="Id">
<generator class="sequence"/>
</id>
<set name="Children" inverse="true" |azy="true">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</set>
</cl ass>

NHibernate 5.1 73

Collection Mapping

<cl ass nanme="Chil d">
<id nanme="I|d">
<gener at or cl ass="sequence"/>

</id>

<property name="Name"/>

<many-t o-one nane="parent" class="Parent" colum="parent_id" not-null="true"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Notice the NOT NULL constraint:

create table parent (Id bigint not null primary key)
create table child (Id bigint not nul
primary key,
Nanme var char (255),
parent _id bigint not null)
alter table child add constraint childfkO (parent_id) references parent

On the other hand, if a child might have multiple parents, a many-to-many association is appropriate:

<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 2"
assenbl y="Eg" namespace="Eg">

<cl ass nanme="Parent" >
<id name="1d">
<gener ator cl ass="sequence"/>
</id>
<set nanme="Children" l|lazy="true" table="childset">
<key col um="parent _id"/>
<many-to- many cl ass="Child" colum="child_id"/>
</set>
</cl ass>

<cl ass name="eg. Chi | d">
<id name="|d">
<generator class="sequence"/>
</id>
<property name="Name"/>
</ cl ass>

</ hi ber nat e- mappi ng>

Table definitions;

create table parent (Id bigint not null primry key)
create table child (Id bigint not null primry key, name varchar(255))
create table childset (parent_id bigint not null

child_id bigint not null,

primary key (parent_id, child_id))
alter table childset add constraint childsetfkO (parent_id) references parent
alter table childset add constraint childsetfkl (child_id) references child

See also Chapter 22, Example: Parent/Child.

NHibernate 5.1

74

Chapter 7. Component Mapping

The notion of a component is re-used in several different contexts, for different purposes, throughout NHibern-
ate.

7.1. Dependent objects

A component is a contained object that is persisted as a value type, not an entity. The term "component” refers
to the object-oriented notion of composition (not to architecture-level components). For example, you might
model a person like this:

public class Person

{
public string Key { get; set; }
public DateTine Birthday { get; set; }
public Nane Name { get; set; }

}

public class Nane

{
public string First { get; set; }
public string Last { get; set; }
public char Initial { get; set; }

}

Now Nanme may be persisted as a component of Per son. Notice that Nane defines getter and setter methods for
its persistent properties, but doesn't need to declare any interfaces or identifier properties.

Our NHibernate mapping would look like:

<cl ass name="Eg. Person, Eg" tabl e="person">
<id name="Key" colum="pid" type="string">
<generator class="uui d. hex"/>

</id>
<property name="Birthday" type="date"/>
<conponent name="Nane" cl ass="Eg. Name, Eg"> <!-- class attribute optional -->

<property nane="Initial"/>
<property nane="First"/>
<property name="Last"/>
</ conponent >
</cl ass>

The person table would have the columns pi d, Bi rt hday, I niti al , Fi rst and Last .

Like al value types, components do not support shared references. The null value semantics of a component
are ad hoc. When reloading the containing object, NHibernate will assume that if all component columns are
null, then the entire component is null. This should be okay for most purposes.

The properties of a component may be of any NHibernate type (collections, many-to-one associations, other
components, etc). Nested components should not be considered an exotic usage. NHibernate is intended to sup-
port avery fine-grained object model.

NHibernate 5.1 75

Component Mapping

The <conponent > element allows a <par ent > sub-element that maps a property of the component class as a ref-
erence back to the containing entity.

<cl ass name="Eg. Person, Eg" tabl e="person">
<id name="Key" colum="pid" type="string">
<generator class="uuid. hex"/>
</id>
<property nane="Birthday" type="date"/>
<conponent name="Nane" cl ass="Eg. Name, Eg">
<par ent nanme="NanedPerson"/> <!-- reference back to the Person -->
<property nane="lnitial"/>
<property nane="First"/>
<property nanme="Last"/>
</ conponent >
</ cl ass>

7.2. Collections of dependent objects

Coallections of components are supported (eg. an array of type Nane). Declare your component collection by re-
placing the <el enent > tag with a <conposi t e- el enent > tag.

<set nanme="SoneNanes" tabl e="sone_nanes" |azy="true">
<key col um="id"/>
<conposite-el enent class="Eg. Nane, Eg"> <!-- class attribute required -->
<property nane="Initial"/>
<property nane="First"/>
<property nane="Last"/>
</ conposi t e- el enent >
</set>

Note: if you define an | set of composite elements, it is very important to implement Equal s() and Get Hash-
Code() correctly.

Composite elements may contain components but not collections. If your composite element itself contains
components, use the <nest ed- conposi t e- el ement > tag. Thisis a pretty exotic case - a collection of compon-
ents which themselves have components. By this stage you should be asking yourself if a one-to-many associ-
ation is more appropriate. Try remodelling the composite element as an entity - but note that even though the
object model is the same, the relational model and persistence semantics are still slightly different.

Please note that a composite element mapping doesn't support null-able properties if you're using a <set >.
NHibernate has to use each columns value to identify a record when deleting objects (there is no separate
primary key column in the composite element table), which is not possible with null values. Y ou have to either
use only not-null propertiesin a composite-element or choose a<l i st >, <map>, <bag> Or <i dbag>.

A specia case of a composite element is a composite element with a nested <many- t o- one> element. A map-
ping like this allows you to map extra columns of a many-to-many association table to the composite element
class. The following is a many-to-many association from o der to Item where PurchaseDate, Price and
Quant ity are properties of the association:

<cl ass nanme="Order" >

<set name="Purchasedltens" tabl e="purchase_itens" |azy="true">
<key col um="order _id">
<conposi te-el emrent cl ass="Purchase" >
<property name="PurchaseDate"/ >
<property nane="Price"/>
<property name="Quantity"/>
<many-to-one nanme="Iltent class="Iten'/> <!-- class attribute is optional -->
</ conposi t e- el emrent >

NHibernate 5.1 76

Component Mapping

</ set >
</ cl ass>

Even ternary (or quaternary, etc) associations are possible:

<cl ass nanme="Order" >

<set name="Purchasedltens" tabl e="purchase_ itens" |azy="true">
<key col um="order _id">
<conposi te-el erent cl ass="Or derLi ne">
<many-t 0- one name="Pur chaseDet ails cl ass="Purchase"/>
<many-t o-one nane="Iten' class="Iten'/>
</ conposi t e- el emrent >
</set>
</ cl ass>

Composite elements may appear in queries using the same syntax as associations to other entities.

7.3. Components as IDictionary indices

The <conposi t e- i ndex> element lets you map a component class asthe key of an1 bi cti onary. Make sure you
override Get HashCode() and Equal s() correctly on the component class.

7.4. Components as composite identifiers

Y ou may use a component as an identifier of an entity class. Y our component class must satisfy certain require-
ments:

* It must be marked with the Seri al i zabl e attribute.

e It must re-implement Equal s() and Get HashCode(), consistently with the database's notion of composite
key equality.

e It should re-implement ToSt ri ng() if you consider using the second level cache. See Section 26.1, “How to
use acache?’.

You can't use an | I dentifierGenerator t0 generate composite keys. Instead the application must assign its
own identifiers.

Since a composite identifier must be assigned to the object before saving it, we can't use unsaved- val ue of the
identifier to distinguish between newly instantiated instances and instances saved in a previous session.

You may instead implement | I nterceptor. | sTransi ent () if you wish to use SaveOr Updat e() or cascading
save / update. As an dternative, you may also set the unsaved-val ue attribute on a <version> (or
<t i mest anp>) element to specify a value that indicates a new transient instance. In this case, the version of the
entity is used instead of the (assigned) identifier and you don't have to implement 11ntercept-
or.IsTransient () yourself.

Use the <conposi t e- i d> tag (same attributes and elements as <conponent >) in place of <i d> for the declaration
of acomposite identifier class:

<cl ass name="Foo0" tabl e="FOCS">
<conposi te-id nanme="Conpl d* cl ass="FooConpositel D'>
<key- property name="String"/>
<key- property nane="Short"/>
<key-property name="Date" colum="date_" type="Date"/>
</ conposite-id>
<property name="Name"/>

NHibernate 5.1 77

Component Mapping

</ cl ass>

Now, any foreign keys into the table FOos are also composite. Y ou must declare this in your mappings for other
classes. An association to Foo would be declared like this:

<many-t o- one nanme="Foo" class="Fo0">

<l-- the "class" attribute is optional, as usual -->
<col um nanme="foo_string"/>
<col um nane="foo_short"/>
<col um nane="f oo_date"/ >

</ many-t o- one>

This new <col um> tag is also used by multi-column custom types. Actually it is an alternative to the col um at-
tribute everywhere. A collection with elements of type Foo would use:

<set nane="Foos">
<key col um="owner _id"/>
<many-t o- many cl ass="Foo">
<col um nane="foo_string"/>
<col um nane="foo_short"/>
<col um nane="f oo_date"/ >
</ many-t o- many>
</set>

On the other hand, <one- t o- nrany>, as usual, declares no columns.
If Foo itself contains collections, they will also need a composite foreign key.

<cl ass nanme="Foo" >

<set nane="Dates" |azy="true">
<key> <I-- a collection inherits the conposite key type -->
<col um nane="foo_string"/>
<col um nane="foo_short"/>
<col um nane="foo_date"/>
</ key>
<el enent col um="foo_date" type="Date"/>
</ set>
</ cl ass>

7.5. Dynamic components

Y ou may even map a property of type! Di cti onary:

<dynam c- conponent name="UserAttri butes">

<property nane="Foo" col um="FQOOJ'/>

<property nane="Bar" col um="BAR'/>

<many-t o-one nane="Baz" cl ass="Baz" col um="BAZ"/>
</ dynam c- conponent >

The semantics of a<dynani c- conponent > mapping are identical to <conponent >. The advantage of this kind of
mapping is the ability to determine the actual properties of the component at deployment time, just by editing
the mapping document. (Runtime manipulation of the mapping document is also possible, using a DOM pars-
er.)

NHibernate 5.1 78

Chapter 8. Inheritance Mapping

8.1. The Three Strategies

NHibernate supports the three basic inheritance mapping strategies.

* table per class hierarchy
e table per subclass
» table per concrete class

In addition, NHibernate supports a fourth, dightly different kind of polymorphism:

e implicit polymorphism

It is possible to use different mapping strategies for different branches of the same inheritance hierarchy, and
then make use of implicit polymorphism to achieve polymorphism across the whole hierarchy. However,
NHibernate does not support mixing <subcl ass>, and <j oi ned- subcl ass> and <uni on- subcl ass> Mappings
under the same root <cl ass> element. It is possible to mix together the table per hierarchy and table per sub-
class strategies, under the the same <cl ass> element, by combining the <subcl ass> and <j oi n> elements (see
below).

It is possible to define subcl ass, uni on- subcl ass, and j oi ned- subcl ass mappings in separate mapping docu-
ments, directly beneath hi ber nat e- mappi ng. This allows you to extend a class hierarchy just by adding a new
mapping file. Y ou must specify an ext ends attribute in the subclass mapping, naming a previously mapped su-
perclass.

<hi ber nat e- mappi ng>
<subcl ass nane="Donesti cCat" extends="Cat" discrim nator-val ue="D'>
<property nanme="nane" type="string"/>
</ subcl ass>
</ hi ber nat e- mappi ng>

8.1.1. Table per class hierarchy

Suppose we have an interface | Paynent , with implementors Cr edi t Car dPaynent , CashPaynment , ChequePay-
ment . The table-per-hierarchy mapping would look like:

<cl ass nanme="|Paynment" tabl e=" PAYMENT" >
<id name="1d" type="Int64" col um="PAYMENT | D'>
<generator class="native"/>
</id>
<di scri m nator col um="PAYMENT_TYPE" type="String"/>
<property nane="Amount" col utm="AMOUNT"/ >

<subcl ass nane="Credi t Car dPaynent" di scri m nator-val ue="CREDI T" >

</ subcl ass>
<subcl ass nane="CashPaynent" di scri m nator-val ue=" CASH'>

</ subcl ass>
<subcl ass nane="ChequePaynent" di scri m nator-val ue=" CHEQUE" >

NHibernate 5.1 79

Inheritance Mapping

</ subcl ass>
</ cl ass>

Exactly onetableisrequired. Thereisone big limitation of this mapping strategy: columns declared by the sub-
classes may not have NOT NULL constraints.

8.1.2. Table per subclass

A table-per-subclass mapping would look like:

<cl ass nanme="|Paynment" tabl e=" PAYMENT" >
<id name="1d" type="Int64" col um="PAYMENT | D'>
<generator class="native"/>
</id>
<property nane="Amount" col utm="AMOUNT"/ >

<j oi ned- subcl ass nane="Credi t Car dPaynent" tabl e=" CREDI T_PAYMENT" >
<key col um="PAYMENT_| D'/ >

</ j oi ned- subcl ass>
<j oi ned- subcl ass nane="CashPaynent" tabl e=" CASH_PAYNMENT" >
<key col umm="PAYMENT | D'/ >

</ j oi ned- subcl ass>
<j oi ned- subcl ass nane="ChequePaynent" t abl e=" CHEQUE_PAYMENT" >
<key col umm="PAYMENT | D'/ >

</ j oi ned- subcl ass>
</ cl ass>

Four tables are required. The three subclass tables have primary key associations to the superclass table (so the
relational model is actually a one-to-one association).

8.1.3. Table per subclass, using a discriminator

Note that NHibernate's implementation of table-per-subclass requires no discriminator column. Other object/
relational mappers use a different implementation of table-per-subclass which requires a type discriminator
column in the superclass table. The approach taken by NHibernate is much more difficult to implement but ar-
guably more correct from a relational point of view. If you would like to use a discriminator column with the
table per subclass strategy, you may combine the use of <subcl ass> and <j oi n>, asfollow:

<cl ass nanme="Payment" tabl e=" PAYMENT" >
<id name="1d" type="Int64" col um="PAYMENT | D'>
<generator class="native"/>
</id>
<di scri m nat or col um="PAYMENT_TYPE" type="string"/>
<property nane="Amount" col um="AMOUNT"/ >

<subcl ass nane="Credi t Car dPaynent" di scri m nator-val ue="CREDI T" >
<j oi n tabl e="CREDI T_PAYMENT" >
<key col um="PAYMENT_| D'/ >
<property nanme="Credit CardType" col utm="CCTYPE"/>

</joi n>
</ subcl ass>
<subcl ass nane="CashPaynent" di scri m nator-val ue=" CASH"' >
<j oi n tabl e=" CASH_PAYMENT" >
<key col umm="PAYMENT | D'/ >

</joi n>
</ subcl ass>
<subcl ass nane="ChequePaynent" di scri m nator-val ue=" CHEQUE" >

NHibernate 5.1 80

Inheritance Mapping

<j oi n tabl e=" CHEQUE_PAYMENT" fetch="sel ect">
<key col um="PAYMENT | D'/ >

</j oi n>
</ subcl ass>
</ cl ass>

The optional f et ch="sel ect" declaration tells NHibernate not to fetch the chequePayrment subclass data using
an outer join when querying the superclass.

8.1.4. Mixing table per class hierarchy with table per subclass

Y ou may even mix the table per hierarchy and table per subclass strategies using this approach:

<cl ass nane="Paynent" tabl e=" PAYMENT" >
<id name="1d" type="Int64" col um="PAYMENT | D' >
<generator class="native"/>
</id>
<di scri m nator col um="PAYMENT_TYPE" type="string"/>
<property nane="Anmpount" col utm="AMOUNT"/ >

<subcl ass nane="Credi t Car dPaynent" di scri m nator-val ue="CREDI T" >
<joi n tabl e="CRED T_PAYMENT" >
<property nane="CreditCardType" col um="CCTYPE"/>

</joi n>
</ subcl ass>
<subcl ass nane="CashPaynent" di scri m nator-val ue=" CASH"'>

</ subcl ass>
<subcl ass nane="ChequePaynent" di scri n nator-val ue=" CHEQUE" >

</ subcl ass>

</ cl ass>

For any of these mapping strategies, a polymorphic association to | Paynent is mapped using <many- t o- one>.

<many-t o- one nane="Paynent" col utm="PAYMENT" cl ass="|Paynment"/>

8.1.5. Table per concrete class

There are two ways we could go about mapping the table per concrete class strategy. The first is to use
<uni on- subcl ass>.

<cl ass nane="Paynent ">
<id name="1d" type="Int64" col um="PAYMENT | D"'>
<gener ator cl ass="sequence"/>
</id>
<property nane="Amount" col utm="AMOUNT"/ >

<uni on- subcl ass nanme="Credit CardPaynment" tabl e=" CREDl T_PAYMENT" >
<property nanme="CreditCardType" col utm="CCTYPE"/>

</ uni on- subcl ass>
<uni on- subcl ass nanme="CashPaynent" tabl e=" CASH PAYMENT" >

</ uni on- subcl ass>
<uni on- subcl ass nane="ChequePaynent" t abl e=" CHEQUE_ PAYNMENT" >

</ uni on- subcl ass>
</ cl ass>

NHibernate 5.1 81

Inheritance Mapping

Three tables are involved for the subclasses. Each table defines columns for all properties of the class, includ-
ing inherited properties.

The limitation of this approach is that if a property is mapped on the superclass, the column name must be the
same on all subclass tables. (We might relax this in a future release of NHibernate.) The identity generator
strategy is not allowed in union subclass inheritance, indeed the primary key seed has to be shared across all
unioned subclasses of a hierarchy.

If your superclass is abstract, map it with abstract ="t rue". Of course, if it is not abstract, an additional table
(defaults to PAYMENT in the example above) is needed to hold instances of the superclass.

8.1.6. Table per concrete class, using implicit polymorphism

An aternative approach is to make use of implicit polymorphism:

<cl ass nanme="Credit CardPaynent" tabl e=" CREDI T_PAYMENT" >
<id name="1d" type="Int64" col um="CRED T_PAYMENT_| D"'>
<generator class="native"/>
</id>
<property nane="Amount" col um="CREDI T_AMOUNT"/ >

</ cl ass>
<cl ass nane="CashPaynent" tabl e=" CASH PAYMENT" >
<id name="1d" type="Int64" col um="CASH PAYMENT_ | D'>
<generator class="native"/>

</id>
<property nane="Anmount" col utm="CASH_AMOUNT"/ >

</ cl ass>
<cl ass nane="ChequePaynent" tabl e=" CHEQUE PAYMENT" >
<id name="1d" type="Int64" col um="CHEQUE PAYMENT | D">
<generator class="native"/>

</id>
<property nane="Amount" col um="CHEQUE AMOUNT"/ >

</ cl ass>

Notice that nowhere do we mention the | Paynent interface explicitly. Also notice that properties of | Paynent
are mapped in each of the subclasses. If you want to avoid duplication, consider using XML entities (e.g. |
<IENTITY allproperties SYSTEM "allproperties.xm">] in the DOCTYPE declaration and
&l | properties; inthe mapping).

The disadvantage of this approach is that NHibernate does not generate SQL UNI oNs when performing poly-
morphic queries.

For this mapping strategy, a polymorphic association to | Paynent is usually mapped using <any>.

<any name="Paynment" meta-type="string" id-type="Int64">
<net a-val ue val ue="CREDI T" cl ass="Credi t CardPaynent"/ >
<net a- val ue val ue="CASH"' cl ass="CashPaynent"/>
<net a- val ue val ue="CHEQUE" cl ass="ChequePaynent"/>
<col um name="PAYMENT_CLASS"/ >
<col um nane="PAYMENT | D'/ >

</ any>

8.1.7. Mixing implicit polymorphism with other inheritance mappings

NHibernate 5.1 82

Inheritance Mapping

There is one further thing to notice about this mapping. Since the subclasses are each mapped in their own
<cl ass> element (and since | Paynent isjust an interface), each of the subclasses could easily be part of another
table-per-class or table-per-subclass inheritance hierarchy! (And you can still use polymorphic queries against
the | Payrent interface.)

<cl ass nanme="Credit CardPaynent" tabl e=" CREDI T_PAYMENT" >
<id name="1d" type="Int64" col um="CRED T_PAYMENT | D"'>
<generator class="native"/>
</id>
<di scri m nator colum="CREDI T_CARD' type="String"/>
<property nane="Anmpunt" col um="CREDI T_AMOUNT"/ >

<subcl ass nane="Mast er Car dPaynent " di scri m nat or - val ue="NDC"/ >
<subcl ass nane="Vi saPaynent" di scri m nator-val ue="VI SA"/ >
</cl ass>

<cl ass nane="Nonel ectroni cTransacti on" tabl e="NONELECTRONI C_TXN'>
<id name="1d" type="Int64" colum="TXN_|ID"'>
<generator class="native"/>
</id>

<j oi ned- subcl ass nane="CashPaynent" tabl e=" CASH_PAYNMENT" >
<key col umm="PAYMENT | D'/ >
<property nane="Anmount" col utm="CASH_AMOUNT"/ >

</ j oi ned- subcl ass>

<j oi ned- subcl ass nane="ChequePaynent" tabl e=" CHEQUE PAYMENT" >
<key col um="PAYMENT_I D'/ >
<property nane="Amount" col um="CHEQUE AMOUNT"/ >

</ j oi ned- subcl ass>
</ cl ass>

Once again, we don't mention | Payrment explicitly. If we execute a query against the | Payment interface - for
example, from 1 Payment - NHibernate automatically returns instances of Credit CardPaynment (and its sub-
classes, since they also implement | Paynent), CashPaynent and ChequePayment but not instances of Nonel ec-
troni cTransacti on.

8.2. Limitations

There are certain limitations to the "implicit polymorphism™ approach to the table per concrete-class mapping
strategy. There are somewhat less restrictive limitations to <uni on- subcl ass> mappings.

The following table shows the limitations of table per concrete-class mappings, and of implicit polymorphism,
in NHibernate.

Table 8.1. Features of inheritance mappings

Inherit- Poly- Poly- Poly- Poly- Poly- Poly- Poly-

ance mor phic mor phic mor phic mor phic mor phic mor phic mor phic

strategy many- one-to-one one- many- Load()/Get queries joins
to-one to-many to-many 0

table per <many-to-o <one-to-on <one-to-ma <many-to-m s.Get<lPay from|Pay- from Order

class- ne> e> ny> any> ment>(id) nment p ojoin

hierarchy 0. Payment

p
table per <many-to-o <one-to-on <one-to-mm <many-to-m s.Get<lPay from|Pay- from O der

NHibernate 5.1 83

Inheritance Mapping

Inherit-
ance

strategy

subclass

table per
concrete-
class
(union-subc
lass)

table per
concrete
class
(implicit
polymorph-
ism)

Poly-
mor phic
many-
to-one

ne>

<many-to-o0
ne>

<any>

Poly-
mor phic
one-to-one

e>

<one-to-on

e>

not suppor-
ted

Poly-
mor phic
one-
to-many

ny>

<one-to-nma
ny> (for

in-
verse="tru
e" only)

not suppor-
ted

Poly-
mor phic
many-
to-many

any>

<many-to-m
any>

<many-to-a
ny>

Poly-

mor phic
Load()/ Get
0

ment >(i d)

s. Get <I Pay
ment >(i d)

use a query

Poly-
mor phic
queries

ment p

from | Pay-
nent p

from| Pay-
nment p

Poly-
mor phic
joins

o join
0. Paynent
p

from O der
o join

0. Paynent
p

not suppor-
ted

NHibernate 5.1

84

Chapter 9. Manipulating Persistent Data

9.1. Creating a persistent object

An object (entity instance) is either transient or persistent with respect to a particular | Sessi on. Newly instanti-
ated objects are, of course, transient. The session offers services for saving (ie. persisting) transient instances:

DonmesticCat fritz = new DonmesticCat();
fritz. Color = Col or. G nger;

fritz.Sex = 'M;

fritz.Nanme = "Fritz";

I ong generatedld = (long) sess. Save(fritz);

Donesti cCat pk = new DonesticCat();
pk. Col or = Col or. Tabby;

pk.Sex = 'F';

pk. Nane = "PK";

pk. Kittens = new HashSet <Cat >();
pk. AddKitten(fritz);

sess. Save(pk, 1234L);

The single-argument Save() generates and assigns a unique identifier to fritz. The two-argument form at-
tempts to persist pk using the given identifier. We generally discourage the use of the two-argument form since
it may be used to create primary keys with business meaning.

Associated objects may be made persistent in any order you like unless you have a NOT NULL constraint upon a
foreign key column. There is never arisk of violating foreign key constraints. However, you might violate a
NOT NULL constraint if you Save() the objectsin the wrong order.

9.2. Loading an object

The Load() methods of | Sessi on give you away to retrieve a persistent instance if you already know itsidenti-
fier. One version takes a class object and will load the state into a newly instantiated object. The second version
allows you to supply an instance into which the state will be loaded. The form which takes an instance is only
useful in special circumstances (DIY instance pooling etc.)

Cat fritz = sess.Load<Cat>(generatedld);

| ong pkld = 1234;
Donesti cCat pk = sess. Load<Donesti cCat >(pkld);

Cat cat = new DonesticCat();
/1 load pk's state into cat
sess. Load(cat, pkld);

var kittens = cat.Kittens;

Note that Load() will throw an unrecoverable exception if there is no matching database row. If the classis
mapped with a proxy, Load() returns an object that is an uninitialized proxy and does not actually hit the data-
base until you invoke a method of the object. This behaviour is very useful if you wish to create an association
to an object without actually loading it from the database.

If you are not certain that a matching row exists, you should use the Get () method, which hits the database im-
mediately and returns null if there is no matching row.

NHibernate 5.1 85

Manipulating Persistent Data

Cat cat = sess. CGet<Cat>(id);
if (cat==null) {

cat = new Cat ();

sess. Save(cat, id);

}

return cat;

You may also load an objects using an SQL SELECT ... FOR UPDATE. See the next section for a discussion of
NHibernate LockMbdes.

Cat cat = sess. CGet<Cat>(id, LockMdde. Upgrade);

Note that any associated instances or contained collections are not selected FOR UPDATE.

It is possible to re-load an object and all its collections at any time, using the Ref r esh() method. Thisis useful
when database triggers are used to initialize some of the properties of the object.

sess. Save(cat);
sess. Flush(); //force the SQ | NSERT
sess. Refresh(cat); //re-read the state (after the trigger executes)

An important question usually appears at this point: How much does NHibernate load from the database and
how many SQL sSeLECTs will it use? This depends on the fetching strategy and is explained in Section 20.1,
“Fetching strategies”.

9.3. Querying

If you don't know the identifier(s) of the object(s) you are looking for, use the & eat eQuer y() method of | Ses-
si on. NHibernate supports a simple but powerful object oriented query language.

I Li st<Cat> cats = sess
.CreateQuery("from Cat as cat where cat.Birthdate = ?")
. Set Dat eTi ne(0, date)
. Li st<Cat>();

var mates = sess
.CreateQuery("select mate from Cat as cat join cat.Mate as mate " +
"where cat.name = ?")
.Set String(0, nane)
. Li st<Cat >();

var cats = sess
.CreateQuery("from Cat as cat where cat.Mate.Birthdate is null")
. Li st<Cat >();

var noreCats = sess
.CreateQuery("from Cat as cat where " +
"cat.Name = 'Fritz' or cat.id = ? or cat.id = ?")
.Setlnt64(0, idl)
. Set Parameter (1, id2, NH bernateUtil.Int64)
.List<Cat>();

var mates = sess
.CreateQuery("from Cat as cat where cat.Mate = ?")
.SetEntity(0, izi)
.List<Cat>();

var problens = sess
.CreateQuery("from Gol dFi sh as fish " +
"where fish.Birthday > fish. Deceased or fish.Birthday is null")
. Li st <Gol dFi sh>();

NHibernate 5.1 86

Manipulating Persistent Data

These given set parameters are used to bind the given values to the ? query placeholders (which map to input
parameters of an ADO.NET DbConmand). Just asin ADO.NET, you should use this binding mechanism in pref-
erence to string manipulation.

The NHi bernateUti | class defines a number of static methods and constants, providing access to most of the
built-in types, asinstances of NH ber nat e. Type. | Type.

If you expect your query to return a very large number of objects, but you don't expect to use them all, you
might get better performance from the Enuner abl e() method, which return a | Enuner abl e. The iterator will
load objects on demand, using the identifiers returned by aninitial SQL query (n+1 selectstotal).

/1 fetch ids

| Enuner abl e<Qux> en = sess
.CreateQuery("fromeg. Qux g order by q.Likeliness")
. Enuner abl e<Qux>();

foreach (Qux qux in en)

{
/1 sonething we coul dnt express in the query
i f (qux.Cal cul at eConpl i catedAl gorithm()) {
/1 dont need to process the rest
br eak;
}
}

The Enuner abl e() method also performs better if you expect that many of the objects are already loaded and
cached by the session, or if the query results contain the same objects many times. (When no data is cached or
repeated, Creat eQuery() is amost always faster.) Here is an example of a query that should be called using
Enuner abl e() :

var en = Sess

. Creat eQuery(
"sel ect customer, product " +
"from Custoner custoner, " +

"Product product " +
"join custoner. Purchases purchase " +
"where product = purchase. Product")

. Enuner abl e<obj ect[]>();

Calling the previous query using Cr eat eQuer y() would return avery large ADO.NET result set containing the
same data many times.

NHibernate queries sometimes return tuples of objects, in which case each tuple is returned as an array:

var foosAndBars = sess
. Creat eQuery(
"sel ect foo, bar from Foo foo, Bar bar " +
"where bar.Date = foo. Date")
. Enuner abl e<obj ect[]1>();
foreach (object[] tuple in foosAndBars)

{
Foo foo = tuple[0]; Bar bar = tuple[l];

9.3.1. Scalar queries

Queries may specify a property of aclassin the sel ect clause. They may even call SQL aggregate functions.
Properties or aggregates are considered "scalar” results.

NHibernate 5.1 87

Manipulating Persistent Data

var results = sess
. Creat eQuery(
"select cat.Color, mn(cat.Birthdate), count(cat) fromCat cat " +
"group by cat. Col or")
. Enuner abl e<obj ect[]>():
foreach (object[] rowin results)

{
Col or type = (Color) row0];
Dat eTi me ol dest = (DateTine) row 1];
int count = (int) row2];

}

var en = sess
. Creat eQuery(
"sel ect cat.Type, cat.Birthdate, cat.Nane from DonesticCat cat")
. Enuner abl e<obj ect[]>();

I Li st<object[]> list = sess
.CreateQuery("sel ect cat, cat.Mte. Name from DonmesticCat cat")
. Li st<object[]>();

9.3.2. The IQuery interface

If you need to specify bounds upon your result set (the maximum number of rows you want to retrieve and / or
the first row you want to retrieve) you should obtain an instance of NHi ber nate. | Query:

| Query q = sess. CreateQuery("from DonesticCat cat");
g. Set Fi r st Resul t (20);

g. Set MaxResul t s(10) ;

var cats = (. List<Cat>();

You may even define a named query in the mapping document. (Remember to use a CDATA section if your
query contains characters that could be interpreted as markup.)

<query nane="Eg. Donmesti cCat. by. nane. and. m ni num wei ght " ><! [CDATA[
from Eg. Donesti cCat as cat
where cat.Nanme = ?
and cat.Wight > ?
1 1></query>

| Query q = sess. Get NanedQuer y(" Eg. Donesti cCat . by. nane. and. mi ni mrum wei ght") ;
g.Set String(0, nane);

g. Set I nt32(1, m nWeight);

var cats = . List<Cat>();

Named queries are by default validated at startup time, allowing to catch errors more easily than having to test
al the application features using HQL queries. In case of validation errors, the details of failing queries are
logged and avalidation error israised.

Named queries accepts a number of attributes matching settings available on the | Query interface.

e flush-node - override the session flush mode just for this query.

e cacheabl e - allow the query results to be cached by the second level cache. See Chapter 26, NHibern-
ate.Caches.

* cache-regi on - specify the cache region of the query.

* cache- node - specify the cache mode of the query.

e fetch-size - set afetch size for the underlying ADO query.

e timeout - Setthe query timeout in seconds.

NHibernate 5.1 88

Manipulating Persistent Data

* read-only -true switchesyielded entities to read-only. See Chapter 10, Read-only entities.
e comment - add a custom comment to the generated SQL.

The query interface supports the use of named parameters. Named parameters are identifiers of the form : nane
in the query string. There are methods on | Query for binding values to named or positional parameters.
NHibernate numbers parameters from zero. The advantages of named parameters are:

* named parameters are insensitive to the order they occur in the query string
» they may occur multiple times in the same query
» they are self-documenting

/I naned paranmeter (preferred)

| Query q = sess. CreateQuery("from Domesti cCat cat where cat.Nane = :nane");
g.SetString("nane", "Fritz");

var cats = q. Enumer abl e<Donesti cCat >();

/I positional paraneter

| Query q = sess.CreateQuery("from DonesticCat cat where cat.Nanme = ?");
g.SetString(0, "lzi");

var cats = (. Enunerabl e<Donesti cCat >();

/I naned paranmeter |ist

var names = new List<string>();

nanes. Add("1zi");

nanes. Add("Fritz");

| Query q = sess. CreateQuery("from Domesti cCat cat where cat.Nane in (:nanmesList)");
g. Set Par anet er Li st (" nanesLi st", nanes);

var cats = . List<DonesticCat>();

9.3.3. Filtering collections

A collection filter is a special type of query that may be applied to a persistent collection or array. The query
string may refer tot hi s, meaning the current collection element.

var bl ackKittens = session
.CreateFilter(pk.Kittens, "where this.Color = ?")
. Set Enun(0, Col or. Bl ack)
.List<Cat>();

The returned collection is considered a bag.

Observe that filters do not require af r omclause (though they may have one if required). Filters are not limited
to returning the collection elements themselves.

var bl ackKittenMates = session
.CreateFilter(pk.Kittens,
"sel ect this.Mate where this. Color = Eg.Col or. Bl ack")
. List<Cat>();

9.3.4. Criteria queries

HQL is extremely powerful but some people prefer to build queries dynamically, using an object oriented API,
rather than embedding strings in their .NET code. For these people, NHibernate provides an intuitive | Cri ter -
i a query API.

ICriteria crit = session.CreateCriteria<Cat>();
crit.Add(Expression. Eq("col or", Eg.Col or. Bl ack));
crit. Set MaxResul ts(10);

NHibernate 5.1 89

Manipulating Persistent Data

var cats = crit.List<Cat>();

If you are uncomfortable with SQL-like syntax, this is perhaps the easiest way to get started with NHibernate.
This API is aso more extensible than HQL. Applications might provide their own implementations of the
| Criterion interface.

9.3.5. Queries in native SQL

You may expressaquery in SQL, using Creat eSQLQuer y() . You must enclose SQL aliasesin braces.

var cats = session
. Creat eSQLQuer y(" SELECT {cat.*} FROM CAT {cat} WHERE ROMNUM<10")
.AddEntity("cat", typeof(Cat))
. Li st<Cat>();

var cats = session

. Creat eSQ_Quer y(
"SELECT {cat}.ID AS {cat.ld}, {cat}.SEX AS {cat.Sex}, " +
"{cat}. MATE AS {cat. Mate}, {cat}.SUBCLASS AS {cat.class}, ... " +

"FROM CAT {cat} WHERE ROANUMK10")
.AddEntity("cat", typeof(Cat))
. Li st <Cat >()

SQL queries may contain named and positional parameters, just like NHibernate queries.

9.4. Updating objects

9.4.1. Updating in the same ISession

Transactional persistent instances (ie. objects loaded, saved, created or queried by the | Sessi on) may be ma-
nipulated by the application and any changes to persistent state will be persisted when the | Sessi on is flushed
(discussed later in this chapter). So the most straightforward way to update the state of an object isto Load() it,
and then manipulate it directly, whilethe | Sessi on is open:

Donesti cCat cat = sess. Load<Donesti cCat>(69L);
cat. Name = "PK";
sess. Flush(); // changes to cat are automatically detected and persisted

Sometimes this programming modé is inefficient since it would require both an SQL SELECT (to load an ob-
ject) and an SQL UPDATE (to persist its updated state) in the same session. Therefore NHibernate offers an al-
ternate approach.

9.4.2. Updating detached objects

Many applications need to retrieve an object in one transaction, send it to the Ul layer for manipulation, then
save the changes in a new transaction. (Applications that use this kind of approach in a high-concurrency envir-
onment usually use versioned data to ensure transaction isolation.) This approach requires a slightly different
programming model to the one described in the last section. NHibernate supports this model by providing the
method | Sessi on. Updat e() .

[/ in the first session
Cat cat = firstSession.Load<Cat>(catld);
Cat potential Mate = new Cat();

NHibernate 5.1 90

Manipulating Persistent Data

firstSession. Save(potential Mate);

/1 in a higher tier of the application
cat.Mate = potenti al Mat e;

// later, in a new session
secondSessi on. Update(cat); // update cat
secondSessi on. Update(mate); // update mate

If the cat with identifier cat | d had already been loaded by secondSessi on when the application tried to update
it, an exception would have been thrown.

The application should individually Updat e() transient instances reachable from the given transient instance if
and only if it wants their state also updated. (Except for lifecycle objects, discussed later.)

NHibernate users have requested a general purpose method that either saves atransient instance by generating a
new identifier or update the persistent state associated with its current identifier. The SaveOr Updat e() method
now implements this functionality.

NHibernate distinguishes "new" (unsaved) instances from "existing" (saved or loaded in a previous session) in-
stances by the value of their identifier (or version, or timestamp) property. The unsaved- val ue attribute of the
<i d> (or <version>, Or <ti nmest anp>) mapping specifies which values should be interpreted as representing a
"new" instance.

<id name="1d" type="Int64" col um="uid" unsaved-val ue="0">
<generator class="hilo"/>
</id>

The allowed values of unsaved- val ue are:

e any - dwayssave

* none - aways update

e null -savewhen identifier isnull

e valididentifier value - save when identifier is null or the given value

* undefined - if setfor versi on Or ti mest anp, then identifier check isused

If unsaved- val ue is not specified for a class, NHibernate will attempt to guess it by creating an instance of the
class using the no-argument constructor and reading the property value from the instance.

/1 in the first session
Cat cat = firstSession. Load<Cat>(catlD);

/1 in a higher tier of the application
Cat mate = new Cat();
cat.Mate = mate;

// later, in a new session
secondSessi on. SaveOr Updat e(cat) ; /] update existing state (cat has a non-null id)
secondSessi on. SaveOr Update(mate); // save the new instance (nmate has a null id)

The usage and semantics of SaveOr Updat e() seems to be confusing for new users. Firstly, so long as you are
not trying to use instances from one session in another new session, you should not need to use Updat e() or
SaveOr Updat e() . Some whole applications will never use either of these methods.

Usually Updat e() or SaveOr Updat e() are used in the following scenario:

« the application loads an object in the first session
« theobject is passed up to the Ul tier
» some modifications are made to the object

NHibernate 5.1 91

Manipulating Persistent Data

» theobject is passed back down to the business logic tier
» the application persists these modifications by calling Updat e() in asecond session

SaveOr Updat e() doesthe following:

e if the object isaready persistent in this session, do nothing

« if the object has no identifier property, Save() it

» if the object's identifier matches the criteria specified by unsaved- val ue, Save() it

» if the object is versioned (versi on oOr ti mest anp), then the version will take precedence to identifier check,
unless the versions unsaved- val ue="undef i ned" (default value)

e if another object associated with the session has the same identifier, throw an exception

The last case can be avoided by using Mer ge(Obj ect o) . This method copies the state of the given object onto
the persistent object with the same identifier. If there is no persistent instance currently associated with the ses-
sion, it will be loaded. The method returns the persistent instance. If the given instance is unsaved or does not
exist in the database, NHibernate will save it and return it as a newly persistent instance. Otherwise, the given
instance does not become associated with the session. In most applications with detached objects, you need
both methods, SaveOr Updat e() and Mer ge() .

9.4.3. Reattaching detached objects

The Lock() method allows the application to re-associate an unmodified object with a new session.

/]just reassoci ate:

sess. Lock(fritz, LockMode. None);

//do a version check, then reassoci ate:

sess. Lock(i zi, LockMde. Read);

//do a version check, using SELECT ... FOR UPDATE, then reassoci ate:
sess. Lock(pk, LockMdde. Upgrade);

9.5. Deleting persistent objects

| Sessi on. Del et e() will remove an object's state from the database. Of course, your application might still
hold areferencetoit. Soit's best to think of Del et e() as making a persistent instance transient.

sess. Del ete(cat);

Y ou may also delete many objects at once by passing a NHibernate query string to Del et e() .

sess. Del ete("from Cat");

Y ou may now delete abjects in any order you like, without risk of foreign key constraint violations. Of course,
itisdtill possible to violate aNoT NULL constraint on a foreign key column by deleting objects in the wrong or-
der.

9.6. Flush

From time to time the | Sessi on will execute the SQL statements needed to synchronize the ADO.NET connec-
tion's state with the state of objects held in memory. This process, flush, occurs by default at the following
points

+ from some invocations of | Query methods such as Li st or Enuner abl e, and from similar methods of other

NHibernate 5.1 92

Manipulating Persistent Data

querying API.
e from NHi bernate. | Transacti on. Comi t ()
e fromi Sessi on. Fl ush()

The SQL statements are issued in the following order

al entity insertions, in the same order the corresponding objects were saved using | Sessi on. Save()

al entity updates

all collection deletions

al collection element deletions, updates and insertions

all collection insertions

al entity deletions, in the same order the corresponding objects were deleted using | Sessi on. Del et e()

Sk wphrE

(An exception isthat objectsusing i denti ty ID generation are inserted when they are saved.)

Except when you explicitly FI ush(), there are absolutely no guarantees about when the Sessi on executes the
ADO.NET cadlls, only the order in which they are executed. However, NHibernate does guarantee that the quer-
ies methods will never return stale data; nor will they return the wrong data.

It is possible to change the default behavior so that flush occurs less frequently. The FI ushvde class defines
three different modes: only flush at commit time (and only when the NHibernate | Tr ansacti on API isused, or
inside a transaction scope), flush automatically using the explained routine (will only work inside an explicit
NHibernate | Transact i on or inside a transaction scope), or never flush unless Fi ush() iscaled explicitly. The
last mode is useful for long running units of work, where an |Session is kept open and disconnected for along
time (see Section 11.4, “ Optimistic concurrency control”).

sess = sf. OpenSession();
using (Il Transaction tx = sess. Begi nTransaction())

{

/1 allow queries to return stale state

sess. Fl ushiwbde = Fl ushibde. Commi t ;

Cat izi = sess.lLoad<Cat>(id);

izi.Nanme = "iznizi";

/| execute some queries....

sess. CreateQuery("from Cat as cat left outer join cat.Kittens kitten")
. Li st<object[]>();

/!l change to izi is not flushed!

tx. Commit(); // flush occurs

9.7. Checking dirtiness

I Session. 1sDirty() will return whether the session hold any pending change to flush or not. Be cautious
when using this method, its default implementation may have the following effects:

e Dirty checks al the loaded entities. NHibernate does not instrument the entities for being notified of
changes done on loaded ones. Instead, it stores their initial state and compare them to it. If session has
loaded alot of entities, the dirty checking will have a significant impact.

» Triggers pending cascade operations. This includes any pending save of, by example, children added to a
collection having the save cascade enabled. Depending on the entities ID generators (see Section 5.1.5.1,
“generator”), this may trigger calls to the database, or even entity insertions if they are using thei dentity
generator.

9.8. Ending a Session

NHibernate 5.1 93

Manipulating Persistent Data

Ending a session involves four distinct phases:

e flush the session

* commit the transaction
e closethe session

¢ handle exceptions

9.8.1. Flushing the Session

If you happen to be using the | Transact i on API, you don't need to worry about this step. It will be performed
implicitly when the transaction is committed. Otherwise you should call 1| Sessi on. Fl ush() to ensure that all
changes are synchronized with the database.

9.8.2. Committing the database transaction

If you are using the NHibernate | Tr ansact i on API, thislooks like:

tx.Commit(); // flush the session and commit the transaction

If you are managing ADO.NET transactions yourself you should manually Commi t () the ADO.NET transac-
tion.

sess. Fl ush();
current Transacti on. Commit();

If you decide not to commit your changes:

tx. Rol I back(); // rollback the transaction

or.

current Transacti on. Rol | back() ;

If you rollback the transaction you should immediately close and discard the current session to ensure that
NHibernate'sinterna state is consistent.

9.8.3. Closing the ISession

A call to | Sessi on. d ose() marksthe end of asession. The main implication of d ose() isthat the ADO.NET
connection will be relingquished by the session.

tx. Comm t ();
sess. Cl ose();

sess. Fl ush();
current Transacti on. Commit();
sess. O ose();

If you provided your own connection, C ose() returns areferenceto it, so you can manually closeit or return it
to the pool. Otherwise d ose() returnsit to the pool.

NHibernate 5.1 94

Manipulating Persistent Data

9.9. Exception handling

NHibernate use might lead to exceptions, usually H ber nat eExcept i on. This exception can have a nested inner
exception (the root cause), use the | nner Except i on property to accessit.

If the | Sessi on throws an exception you should immediately rollback the transaction, call 1 Sessi on. d ose()
and discard the | Sessi on instance. Certain methods of | Sessi on will not leave the session in a consistent state.

For exceptions thrown by the data provider while interacting with the database, NHibernate will wrap the error
in an instance of ADOException. The underlying exception is accessible by calling ADOExcep-
ti on. I nner Except i on. NHibernate converts the DbExcept i on into an appropriate ADOExcept i on subclass using
the | SQLExcept i onConverter attached to the SessionFactory. By default, the | SQLExcept i onConverter iS
defined by the configured dialect; however, it is also possible to plug in a custom implementation (see the api-
docsfor the | SQLExcept i onConverter classfor details).

The following exception handling idiom shows the typical case in NHibernate applications:

using (1 Session sess = factory. QpenSessi on())
using (Il Transaction tx = sess. Begi nTransaction())

/1l do sone work

tx. Commi t ()

Or, when manually managing ADO.NET transactions:

| Sessi on sess = factory. openSession();
try

/1l do sonme work

sess. Fl ush();
current Transaction. Commit();

catch (Exception e)

{
current Transacti on. Rol | back() ;
t hr ow,

}

finally

{
sess. Cl ose();

}

9.10. Lifecycles and object graphs

To save or update all objectsin agraph of associated objects, you must either

e Save(), SaveO Updat e() Or Updat e() each individual object OR
e map associated objects using cascade="al | " Of cascade="save- updat e" .

Likewise, to delete all objectsin agraph, either

e Delete() eachindividua object OR
* map associated objectsusing cascade="al | ", cascade="al | - del et e- or phan" Of cascade="del et e" .

Recommendation:

NHibernate 5.1 95

Manipulating Persistent Data

» If the child object's lifespan is bounded by the lifespan of the of the parent object make it a lifecycle object
by specifying cascade="al | .

e Otherwise, save() and Del ete() it explicitly from application code. If you really want to save yourself
some extratyping, use cascade="save- updat e" and explicit Del et e() .

Mapping an association (many-to-one, one-to-one or collection) with cascade="al | * marks the association as a
parent/child style relationship where save/update/deletion of the parent results in save/update/deletion of the
child(ren). Furthermore, a mere reference to a child from a persistent parent will result in save / update of the
child. The metaphor is incomplete, however. A child which becomes unreferenced by its parent is not automat-
ically deleted, except in the cases of <one-t o- many> and <one-t o- one> associations that have been mapped
with cascade="al | - del et e- or phan" Or cascade="del et e- or phan" . The precise semantics of cascading opera-
tions are asfollows:

e |If aparentissaved, al children are passed to SaveOr Updat e()

e If aparentispassedto Updat e() Or SaveOr Updat e(), al children are passed to SaveOr Updat e()

» |f atransient child becomes referenced by a persistent parent, it is passed to SaveOr Updat e()

e If aparentisdeleted, al children are passed to Del et e()

e If atransient child is dereferenced by a persistent parent, nothing special happens (the application should
explicitty delete the child if necessary) unless cascade="all-delete-orphan" Of cas-
cade="del et e- or phan", in which case the "orphaned" child is deleted.

NHibernate does not fully implement "persistence by reachability", which would imply (inefficient) persistent
garbage collection. However, due to popular demand, NHibernate does support the notion of entities becoming
persistent when referenced by another persistent object. Associations marked cascade="save- updat e* behave
in this way. If you wish to use this approach throughout your application, it's easier to specify the def aul t -
cascade attribute of the <hi ber nat e- mappi ng> element.

9.11. Interceptors

The I nterceptor interface provides callbacks from the session to the application allowing the application to
inspect and / or manipulate properties of a persistent object before it is saved, updated, deleted or loaded. One
possible use for this is to track auditing information. For example, the following 11 nt er cept or automatically
sets the Creat eTi mest anp When an 1 Audi t abl e is created and updates the Last Updat eTi mest anp property
when an | Audi t abl e is updated.

usi ng System
usi ng NHi ber nat e. Type,;

nanespace NH bernate. Test
{
[Serializabl e]
public class Auditlnterceptor : |lnterceptor

{

private int updates;
private int creates;

public void OnDel et e(obj ect entity,
obj ect id,
object[] state,
string[] propertyNanes,
: I Type[] types)

}

publ i ¢ bool ean OnFl ushDirty(object entity,
obj ect id,
object[] currentState,

/1 do not hi ng

NHibernate 5.1 96

Manipulating Persistent Data

obj ect[] previousState,
string[] propertyNanes,

I Type[] types) {

if (entity is lAuditable)

{
updat es++;
for (int i=0; i < propertyNanes.LlLength; i++)
{
i f ("LastUpdateTi nestanp" == propertyNanes[i])
{
currentState[i] = DateTi me. Now,
return true;
}
}
}

return false;

}

publ i ¢ bool ean OnLoad(object entity,
object id,
object[] state,
string[] propertyNanes,
I Type[] types)

{
return false;
}
publ i c bool ean OnSave(object entity,
obj ect id,
object[] state,
string[] propertyNanes,
I Type[] types)
{
if (entity is |Auditable)
{
Creat es++;
for (int i=0; i<propertyNanes.Length; i++)
{
if ("CreateTimestanp" == propertyNanes[i])
{
state[i] = DateTi me. Now;
return true;
}
}
}
return false;
}
public void PostFl ush(lCollection entities)
{
Consol e. Qut . WiteLine("Creations: {0}, Updates: {1}", creates,
}
public void PreFlush(lCollection entities) {
updat es=0;
creat es=0;

The interceptor would be specified when a session is created.

| Session session = sf.OpenSession(new Auditlnterceptor());

updat es) ;

NHibernate 5.1

97

Manipulating Persistent Data

Y ou may also set an interceptor on aglobal level, using the Conf i gur ati on:

new Configuration().Setlnterceptor(new Auditlnterceptor());

9.12. Metadata API

NHibernate requires a very rich meta-level model of al entity and value types. From time to time, this model is
very useful to the application itself. For example, the application might use NHibernate's metadata to imple-
ment a"smart" deep-copy agorithm that understands which objects should be copied (eg. mutable value types)
and which should not (eg. immutable value types and, possibly, associated entities).

NHibernate exposes metadata via the | d assMet adata and |1 Col | ect i onMet adat a interfaces and the | Type
hierarchy. Instances of the metadata interfaces may be obtained from the | Sessi onFact ory.

Cat fritz = ;

| Gl assMet adat a cat Meta = sessi onfactory. Get Cl assMet adat a(t ypeof (Cat));
long id = (long) catMeta. Getldentifier(fritz);

obj ect[] propertyVal ues = cat Meta. Get PropertyVal ues(fritz);

string[] propertyNanes = cat Meta. PropertyNanes;

| Type[] propertyTypes = cat Meta. PropertyTypes;

/1 get an dictionary of all properties which are not collections or associations
// TODO what about conponents?

var namedVal ues = new Di ctionary<string, object>();
for (int i = 0; i < propertyNanes.Length; i++)

{
if (!propertyTypes[i].IsEntityType && !propertyTypes[i].|lsCollectionType)

nanedVal ues[propertyNanmes[i]] = propertyVal ues[i];

NHibernate 5.1 98

Chapter 10. Read-only entities

| mportant

NHibernate's treatment of read-only entities may differ from what you may have encountered else-
where. Incorrect usage may cause unexpected results.

When an entity is read-only:

* NHibernate does not dirty-check the entity's simple properties or single-ended associations;
¢ NHibernate will not update simple properties or updatable single-ended associations;

* NHibernate will not update the version of the read-only entity if only simple properties or single-ended up-
datable associations are changed;

In some ways, NHibernate treats read-only entities the same as entities that are not read-only:

* NHibernate cascades operations to associations as defined in the entity mapping.

* NHibernate updates the version if the entity has a collection with changes that dirties the entity;

e A read-only entity can be deleted.

Evenif an entity is not read-only, its collection association can be affected if it contains aread-only entity.

For details about the affect of read-only entities on different property and association types, see Section 10.2,
“Read-only affect on property type”.

For details about how to make entities read-only, see Section 10.1, “Making persistent entities read-only”

NHibernate does some optimizing for read-only entities:

« It saves execution time by not dirty-checking simple properties or single-ended associations.

e |t saves memory by deleting database snapshots.

10.1. Making persistent entities read-only

Only persistent entities can be made read-only. Transient and detached entities must be put in persistent state
before they can be made read-only.

NHibernate provides the following ways to make persistent entities read-only:

e you can map an entity class as immutable; when an entity of an immutable class is made persistent,
NHibernate automatically makes it read-only. see Section 10.1.1, “Entities of immutable classes’ for details

* you can change a default so that entities loaded into the session by NHibernate are automatically made
read-only; see Section 10.1.2, “Loading persistent entities as read-only” for details

« you can make an HQL query or criteriaread-only so that entities loaded when the query or criteria executes,

NHibernate 5.1 99

Read-only entities

or iterates, are automatically made read-only; see Section 10.1.3, “Loading read-only entities from an HQL
query/criteria’ for details

* you can make a persistent entity that is already in the in the session read-only; see Section 10.1.4, “Making
apersistent entity read-only” for details

10.1.1. Entities of immutable classes

When an entity instance of an immutable class is made persistent, NHibernate automatically makes it read-
only.

An entity of an immutable class can created and deleted the same as an entity of a mutable class.

NHibernate treats a persistent entity of an immutable class the same way as a read-only persistent entity of a
mutable class. The only exception is that NHibernate will not allow an entity of an immutable class to be
changed so it is not read-only.

10.1.2. Loading persistent entities as read-only

Note

Entities of immutable classes are automatically loaded as read-only.

To change the default behavior so NHibernate loads entity instances of mutable classes into the session and
automatically makes them read-only, call:

Sessi on. Def aul t ReadOnly = true;

To change the default back so entities loaded by NHibernate are not made read-only, call:

Sessi on. Def aul t ReadOnly = fal se;

Y ou can determine the current setting by using the property:

Sessi on. Def aul t ReadOnl y;

If Sessi on. Def aul t ReadOnl y property returns true, entities loaded by the following are automatically made
read-only:

e Session.Load() and Session.Load<T>
e Session.Get() and Session.Get<T>
» Session.Merge()

e executing, or iterating HQL queries and criteria; to override this setting for a particular HQL query or criter-
ia see Section 10.1.3, “Loading read-only entities from an HQL query/criteria’

Changing this default has no effect on:

e persistent entities already in the session when the default was changed

NHibernate 5.1 100

Read-only entities

e persistent entities that are refreshed via Sessi on. Ref resh() ; arefreshed persistent entity will only be read-
only if it was read-only before refreshing

e persistent entities added by the application via Sessi on. Persi st (), Sessi on. Save(), Sessi on. Updat e()
and Sessi on. SaveOr Updat e()

10.1.3. Loading read-only entities from an HQL query/criteria

Note
Entities of immutable classes are automatically loaded as read-only.

If Sessi on. Def aul t ReadOnl y returns false (the default) when an HQL query or criteria executes, then entities
and proxies of mutable classes |oaded by the query will not be read-only.

Y ou can override this behavior so that entities and proxies loaded by an HQL query or criteria are automatically
made read-only.

For an HQL query, call:

Query. Set ReadOnl y(true);

Query. Set ReadOnl y(true) must be caled before Query.List(), Query.UniqueResult(), oOf
Query. Enuner abl e()

For an HQL criteria, call:

Criteria. Set ReadOnl y(true);

Criteria. Set ReadOnl y(true) must be called beforecriteria. List(),0r Criteria. Uni queResul t ()
Entities and proxies that exist in the session before being returned by an HQL query or criteria are not affected.

Uninitialized persistent collections returned by the query are not affected. Later, when the collection is initial-
ized, entities loaded into the session will be read-only if Sessi on. Def aul t ReadOnl y returnstrue.

Using Query. Set ReadOnl y(true) Or Criteria. Set ReadOnl y(true) works well when a single HQL query or
criterialoads al the entities and initializes all the proxies and collections that the application needs to be read-
only.

When it is not possible to load and initialize all necessary entities in a single query or criteria, you can tempor-
arily change the session default to load entities as read-only before the query is executed. Then you can expli-
citly initialize proxies and collections before restoring the session default.

usi ng (1 Session session = factory. OpenSession())
using (Il Transaction tx = session.Begi nTransaction())
{
sessi on. Def aul t ReadOnly = true;
Contract contract = session
.CreateQuery("from Contract where CustonerNanme = ' Sherman'")
. Uni queResul t <Cont ract >() ;
NH bernate.lnitialize(contract. Pl an);
NH bernate.lnitialize(contract. Variations);
NH bernate.lnitialize(contract. Notes);
sessi on. Def aul t ReadOnly = fal se;

tx. Commit();
}

NHibernate 5.1 101

Read-only entities

If Session. Defaul tReadOnly returns true, then you can use Query.SetReadOnly(false) and Criter-
ia.SetReadOnly(false) to override this session setting and load entities that are not read-only.

10.1.4. Making a persistent entity read-only

Note
Persistent entities of immutable classes are automatically made read-only.
To make a persistent entity or proxy read-only, call:

Sessi on. Set ReadOnl y(entityOr Proxy, true)

To change aread-only entity or proxy of amutable class so it is nho longer read-only, call:

Sessi on. Set ReadOnl y(entityOr Proxy, false)

| mportant

When a read-only entity or proxy is changed so it is no longer read-only, NHibernate assumes that the
current state of the read-only entity is consistent with its database representation. If thisis not true, then
any non-flushed changes made before or while the entity was read-only, will be ignored.

To throw away non-flushed changes and make the persistent entity consistent with its database representation,
cal:

Sessi on. Refresh(entity);

To flush changes made before or while the entity was read-only and make the database representation consist-
ent with the current state of the persistent entity:

Il evict the read-only entity so it is detached
session. Evict(entity);

/1 make the detached entity (with the non-flushed changes) persi stent
session. Update(entity);

/1 now entity is no |onger read-only and its changes can be fl ushed
s. Flush();

10.2. Read-only affect on property type

The following table summarizes how different property types are affected by making an entity read-only.

Table 10.1. Affect of read-only entity on property types

Property/Association Type Changesflushed to DB?
Simple no*

(Section 10.2.1, “ Simple properties’)

Unidirectional one-to-one no*

NHibernate 5.1 102

Read-only entities

Property/Association Type Changesflushed to DB?

Unidirectional many-to-one no*
(Section 10.2.2.1, “Unidirectional one-to-one and
many-to-one”)

Unidirectional one-to-many yes
Unidirectional many-to-many yes

(Section 10.2.2.2, “Unidirectional one-to-many and
many-to-many”)

only if the owning entity is not read-only*

Bidirectiona one-to-one

(Section 10.2.3.1, “Bidirectional one-to-one”)

Bidirectional one-to-many/many-to-one

only added/removed entities that are not read-only*

inverse collection

yes
non-inverse collection
(Section 10.2.3.2, “Bidirectional one-
to-many/many-to-on€e”)

yes

Bidirectional many-to-many

(Section 10.2.3.3, “Bidirectional many-to-many”)

* Behavior is different when the entity having the property/association is read-only, compared to when it is not

read-only.

10.2.1. Simple properties

When a persistent object is read-only, NHibernate does not dirty-check simple properties.

NHibernate will not synchronize simple property state changes to the database. If you have automatic version-

ing, NHibernate will not increment the version if any simple properties change.

usi ng (1 Session session = factory. OpenSession())

using (Il Transaction tx = session.Begi nTransaction())

{
/1 get a contract and nmake it read-only
Contract contract = session. Get<Contract>(contractld);
sessi on. Set ReadOnl y(contract, true);

/'l contract. CustonerNane i s "Shernman"
contract. Cust omer Nanme = "Yogi ";
tx. Commit();

tXx = session. Begi nTransaction();

contract = session. Get<Contract>(contractld);
/1 contract.CustonmerNane is still "Sherman"

NHibernate 5.1

103

Read-only entities

tx. Commit();

10.2.2. Unidirectional associations

10.2.2.1. Unidirectional one-to-one and many-to-one

NHibernate treats unidirectional one-to-one and many-to-one associations in the same way when the owning
entity isread-only.

We use the term unidirectional single-ended association when referring to functionality that is common to uni-
directional one-to-one and many-to-one associations.

NHibernate does not dirty-check unidirectional single-ended associations when the owning entity is read-only.

If you change a read-only entity's reference to a unidirectional single-ended association to null, or to refer to a
different entity, that change will not be flushed to the database.

Note

If an entity is of an immutable class, then its references to unidirectional single-ended associations must
be assigned when that entity is first created. Because the entity is automatically made read-only, these
references can not be updated.

If automatic versioning is used, NHibernate will not increment the version due to local changes to unidirection-
al single-ended associations.

In the following examples, Contract has a unidirectional many-to-one association with Plan. Contract cascades
save and update operations to the association.

The following shows that changing a read-only entity's many-to-one association reference to null has no effect
on the entity's database representation.

/1 get a contract with an existing plan;
/1 make the contract read-only and set its plan to null
using (var tx = session.BeginTransaction())

{

Contract contract = session. Get<Contract>(contractld);
sessi on. Set ReadOnl y(contract, true);
contract.Plan = null;
tx. Commit();
}

/1 get the same contract
using (var tx = session.Begi nTransaction())

{

Contract contract = session. Get<Contract>(contractld);
/1 contract.Plan still refers to the original plan;

tx. Commit();
}

session. d ose();

The following shows that, even though an update to a read-only entity's many-to-one association has no affect
on the entity's database representation, flush still cascades the save-update operation to the locally changed as-
sociation.

NHibernate 5.1 104

Read-only entities

/1 get a contract with an existing plan;
/1 make the contract read-only and change to a new pl an
Contract contract;
Pl an newPl an;
using (var tx = session.BeginTransaction())
{
contract = session. Get<Contract>(contractld);
sessi on. Set ReadOnl y(contract, true);
newPl an = new Pl an("new pl an");
contract. Pl an = newPl an;
tx. Commt();
}

/1 get the same contract

using (var tx = session.BeginTransaction())

{
contract = session. Get<Contract>(contractld);
newPl an = sessi on. Get <Pl an>(newPl an. | d) ;

/1 contract.Plan still refers to the original plan;
/1 newPl an is non-null because it was persisted when
/1 the previous transacti on was comi tted;

tx. Commit();
}

session. d ose();

10.2.2.2. Unidirectional one-to-many and many-to-many

NHibernate treats unidirectional one-to-many and many-to-many associations owned by a read-only entity the
same as when owned by an entity that is not read-only.

NHibernate dirty-checks unidirectional one-to-many and many-to-many associations;
The collection can contain entities that are read-only, as well as entities that are not read-only.

Entities can be added and removed from the collection; changes are flushed to the database.

If automatic versioning is used, NHibernate will update the version due to changesin the collection if they dirty
the owning entity.

10.2.3. Bidirectional associations

10.2.3.1. Bidirectional one-to-one

If aread-only entity owns abidirectional one-to-one association:

NHibernate does not dirty-check the association.

updates that change the association reference to null or to refer to adifferent entity will not be flushed to the

database.

If automatic versioning is used, NHibernate will not increment the version due to local changes to the asso-

ciation.

Note

If an entity is of an immutable class, and it owns a bidirectional one-to-one association, then its refer-
ence must be assigned when that entity is first created. Because the entity is automatically made read-

NHibernate 5.1

105

Read-only entities

only, these references cannot be updated.

When the owner is not read-only, NHibernate treats an association with a read-only entity the same as when the
association is with an entity that is not read-only.

10.2.3.2. Bidirectional one-to-many/many-to-one

A read-only entity has no impact on a bidirectional one-to-many/many-to-one association if:

e theread-only entity is on the one-to-many side using an inverse collection;
« theread-only entity is on the one-to-many side using a non-inverse collection;
» the one-to-many side uses a non-inverse collection that contains the read-only entity

When the one-to-many side uses an inverse collection:

» aread-only entity can only be added to the collection when it is created;

« aread-only entity can only be removed from the collection by an orphan delete or by explicitly deleting the
entity.

10.2.3.3. Bidirectional many-to-many

NHibernate treats bidirectiona many-to-many associations owned by a read-only entity the same as when
owned by an entity that is not read-only.

NHibernate dirty-checks bidirectional many-to-many associations.

The collection on either side of the association can contain entities that are read-only, as well as entities that are
not read-only.

Entities are added and removed from both sides of the collection; changes are flushed to the database.

If automatic versioning is used, NHibernate will update the version due to changes in both sides of the collec-
tion if they dirty the entity owning the respective collections.

NHibernate 5.1 106

Chapter 11. Transactions And Concurrency

NHibernate is not itself a database. It is a lightweight object-relational mapping tool. Transaction management
is delegated to the underlying database connection. If the connection is enlisted with a distributed transaction,
operations performed by the | Sessi on are atomically part of the wider distributed transaction. NHibernate can
be seen as athin adapter to ADO.NET, adding object-oriented semantics.

11.1. Configurations, Sessions and Factories

An | Sessi onFactory IS an expensive-to-create, threadsafe object intended to be shared by all application
threads. An | Sessi on is an inexpensive, non-threadsafe object that should be used once, for a single business
process, and then discarded. For example, when using NHibernate in an ASP.NET application, pages could ob-
tain an | Sessi onFact ory using:

| Sessi onFactory sf = d obal . Sessi onFact ory;

Each call to a service method could create anew | Sessi on, Fl ush() it, Commi t () itstransaction, d ose() it and
finally discard it. (The | Sessi onFact ory may also be kept in a static Sngleton helper variable.)

We use the NHibernate | Transacti on APl as discussed previoudy, a single commit () of a NHibernate
I Transact i on flushes the state and commits any underlying database connection. Transaction scopes can be
used instead, which allows the transaction to be distributed. See Section 11.8, “Transaction scopes
(System.Transactions)”.

NHibernate may be used without managing transactions neither with the | Transacti on API nor with transac-
tion scopes. We advise against such a pattern, because this causes each single interaction of the session with the
database to be atransaction on its own. This causes overhead, breaks the unit of work in case of errors during
flushing, and causes some features to be disabled like auto-flush and second level cache. If the application en-
counters locks contention or deadlocks, investigate lowering the isolation level (like enabling read committed
snapshot with SQL Server) or shortening your transactions rather than removing them.

Ensure you understand the semantics of Fl ush() . Flushing synchronizes the persistent store with in-memory
changes but not vice-versa. Note that for all NHibernate ADO.NET connectiong/transactions, the transaction
isolation level for that connection appliesto all operations executed by NHibernate!

The next few sections will discuss alternative approaches that utilize versioning to ensure transaction atomicity.
These are considered "advanced" approaches to be used with care.

11.2. Threads and connections

Y ou should observe the following practices when creating NHibernate Sessions:

* Never create more than one concurrent | Sessi on Or | Tr ansact i on instance per database connection.

» Beextremely careful when creating more than one | Sessi on per database per transaction. The | Sessi on it-
self keeps track of updates made to loaded objects, so a different | Sessi on might see stale data.

* Thel Sessi on isnot threadsafe! Never access the same | Sessi on in two concurrent threads. An | Sessi on is
usually only asingle unit-of-work!

Since NHibernate 5.0, the session and its queries 10 bound methods have async counterparts. Each call to
an async method must be awaited before further interacting with the session or its queries.

NHibernate 5.1 107

Transactions And Concurrency

11.3. Considering object identity

The application may concurrently access the same persistent state in two different units-of-work. However, an
instance of a persistent classis never shared between two | Sessi on instances. Hence there are two different no-
tions of identity:

Database Identity
foo.ld. Equal s(bar.ld)

CLR Identity

foo == bar

Then for objects attached to a particular Sessi on, the two notions are equivalent. However, while the applica-
tion might concurrently access the "same" (persistent identity) business object in two different sessions, the two
instances will actually be "different" (CLR identity).

This approach leaves NHibernate and the database to worry about concurrency. The application never needs to
synchronize on any business object, aslong asit sticksto asingle thread per | Sessi on or object identity (within
an | Sessi on the application may safely use == to compare objects).

11.4. Optimistic concurrency control

Many business processes require a whol e series of interactions with the user interleaved with database accesses.
In web and enterprise applications it is not acceptable for a database transaction to span a user interaction.

Maintaining isolation of business processes becomes the partial responsibility of the application tier, hence we
call this process a long running application transaction. A single application transaction usually spans several
database transactions. It will be atomic if only one of these database transactions (the last one) stores the up-
dated data, al others simply read data.

The only approach that is consistent with high concurrency and high scalability is optimistic concurrency con-
trol with versioning. NHibernate provides for three possible approaches to writing application code that uses
optimistic concurrency.

11.4.1. Long session with automatic versioning

A single| Sessi on instance and its persistent instances are used for the whole application transaction.

The | sessi on uses optimistic locking with versioning to ensure that many database transactions appear to the
application as a single logical application transaction. The I Sessi on is disconnected from any underlying
ADO.NET connection when waiting for user interaction. This approach is the most efficient in terms of data-
base access. The application need not concern itself with version checking or with reattaching detached in-
stances.

/1l foo is an instance | oaded earlier by the Session
sessi on. Reconnect () ;
using (var transaction = session.Begi nTransaction())
{

foo. Property = "bar";

sessi on. Fl ush();

transaction. Commit();

}

sessi on. Di sconnect () ;

NHibernate 5.1 108

Transactions And Concurrency

The f oo object still knows which | Sessi on it was loaded it. As soon as the | Sessi on has an ADO.NET con-
nection, we commit the changes to the object.

This pattern is problematic if our | Sessi on istoo big to be stored during user think time, e.g. an Htt pSessi on
should be kept as small as possible. As the | Sessi on is aso the (mandatory) first-level cache and contains all
loaded objects, we can probably use this strategy only for a few request/response cycles. This is indeed recom-
mended, asthe | Sessi on will soon also have stale data

11.4.2. Many sessions with automatic versioning

Each interaction with the persistent store occursin anew | Sessi on. However, the same persistent instances are
reused for each interaction with the database. The application manipulates the state of detached instances ori-
ginaly loaded in another |Session and then "re-associates’ them using | Session. Update() Or I Ses-
si on. SaveOr Updat e() .

/1l foo is an instance | oaded by a previ ous Session
foo. Property = "bar";

using (var session = factory. OpenSession())

using (var transaction = session.Begi nTransaction())

{

sessi on. SaveOr Updat e(f 00) ;
session. Fl ush();
transaction. Commit();

You may also call Lock() instead of Updat e() and use LockMode. Read (performing a version check, bypassing
all caches) if you are sure that the object has not been modified.

11.4.3. Customizing automatic versioning

You may disable NHibernate's automatic version increment for particular properties and collections by setting
the opti ni stic-1ock Mmapping attribute to f al se. NHibernate will then no longer increment versions if the
property isdirty.

Legacy database schemas are often static and can't be modified. Or, other applications might also access the
same database and don't know how to handle version numbers or even timestamps. In both cases, versioning
can't rely on a particular column in atable. To force a version check without a version or timestamp property
mapping, with a comparison of the state of all fieldsin arow, turn on opti mistic-1ock="al | " inthe <cl ass>
mapping. Note that this conceptually only works if NHibernate can compare the old and new state, i.e. if you
useasinglelong ! Sessi on and not session-per-request-with-detached-objects.

Sometimes concurrent modification can be permitted as long as the changes that have been made don't overlap.
If you set optimistic-1ock="dirty" when mapping the <cl ass>, NHibernate will only compare dirty fields
during flush.

In both cases, with dedicated version/timestamp columns or with full/dirty field comparison, NHibernate uses a
single UPDATE statement (with an appropriate WHERE clause) per entity to execute the version check and update
the information. If you use transitive persistence to cascade reattachment to associated entities, NHibernate
might execute unnecessary updates. Thisis usually not a problem, but on update triggers in the database might
be executed even when no changes have been made to detached instances. Y ou can customize this behavior by
setting sel ect - bef or e- updat e="t rue" in the <cl ass> mapping, forcing NHibernate to SELECT the instance to
ensure that changes did actually occur, before updating the row.

NHibernate 5.1 109

Transactions And Concurrency

11.4.4. Application version checking

Each interaction with the database occurs in a new | Sessi on that reloads all persistent instances from the data-
base before manipulating them. This approach forces the application to carry out its own version checking to
ensure application transaction isolation. (Of course, NHibernate will still update version numbers for you.) This
approach isthe least efficient in terms of database access.

/1 foo is an instance | oaded by a previ ous Session
using (var session = factory. OpenSession())
using (var transaction = session. Begi nTransacti on())

{

i nt ol dVersion = foo. Version;

session. Load(foo, foo.Key);

if (oldVersion != foo.Version) throw new Stal eQbj ect St at eException();
foo. Property = "bar";

sessi on. Fl ush();

transaction. Commit ();

Of course, if you are operating in a low-data-concurrency environment and don't require version checking, you
may use this approach and just skip the version check.

11.5. Session disconnection

The first approach described above is to maintain a single | Sessi on for a whole business process that spans
user think time. (For example, a servlet might keep an | Sessi on in the user's Ht t pSessi on.) For performance
reasons you should

1. committhel Transacti on and then
2. disconnect the ! sessi on from the ADO.NET connection

before waiting for user activity. The method | Sessi on. Di sconnect () will disconnect the session from the
ADO.NET connection and return the connection to the pool (unless you provided the connection).

| Sessi on. Reconnect () obtains a new connection (or you may supply one) and restarts the session. After re-
connection, to force a version check on data you aren't updating, you may call | Sessi on. Lock() on any objects
that might have been updated by another transaction. Y ou don't need to lock any data that you are updating.

Hereis an example:

| Sessi onFactory sessions;
| Li st <Foo> fooLi st ;
Bar bar;

| Session s = sessions. OpenSessi on();
| Transaction tx = null;

try
{

tx = s.Begi nTransaction())

foolList =s
. Creat eQuery(
"sel ect foo from Eg. Foo foo where foo.Date = current date"
/1 uses db2 date function
). Li st <Foo>();

bar = new Bar () ;
s. Save(bar);

NHibernate 5.1 110

Transactions And Concurrency

tx. Comit();

catch (Exception)

{
if (tx !'= null) tx.Rollback();

s.d ose();
t hr ow,

}

s. Di sconnect () ;

Later on:

s. Reconnect () ;

try
{

tx = s.Begi nTransaction();

bar. FooTabl e = new HashMap();
foreach (Foo foo in foolList)

s. Lock(f oo, LockMdde. Read); //check that foo isn't stale
bar. FooTabl e. Put (foo. Name, foo);

}

tx. Comit();

}
catch (Exception)

{
if (tx !'=null) tx.Rollback();

t hr ow;

}
finally

s. Cl ose();

Y ou can see from this how the relationship between | Tr ansact i ons and | Sessi onS iS many-to-one, An I Ses-
si on represents a conversation between the application and the database. The | Transacti on breaks that con-
versation up into atomic units of work at the database level.

11.6. Pessimistic Locking

It is not intended that users spend much time worrying about locking strategies. It's usually enough to specify
an isolation level for the ADO.NET connections and then simply et the database do all the work. However, ad-
vanced users may sometimes wish to obtain exclusive pessimistic locks, or re-abtain locks at the start of a new
transaction.

NHibernate will always use the locking mechanism of the database, never lock objects in memory!

The LockMode class defines the different lock levels that may be acquired by NHibernate. A lock is obtained by
the following mechanisms:

* LockMode. Wi t e isacquired automatically when NHibernate updates or inserts arow.

e LockMde. Upgr ade may be acquired upon explicit user request using SELECT ... FOR UPDATE on databases
which support that syntax.
e LockMode. Upgr adeNoviai t may be acquired upon explicit user request using a SELECT ... FOR UPDATE

Nowal T under Oracle.
e LockMde. Read is acquired automatically when NHibernate reads data under Repeatable Read or Serializ-
ableisolation level. May be re-acquired by explicit user request.

NHibernate 5.1 111

Transactions And Concurrency

* LockMde. None represents the absence of a lock. All objects switch to this lock mode at the end of an
| Transact i on. Objects associated with the session via a call to Updat e() Or SaveQr Updat e() also start out
in thislock mode.

The "explicit user request” is expressed in one of the following ways:

e Acadltol Session. Load(), specifying aLockMde.
e Acdltol Session. Lock().
« Acaltol Query. Set LockMbde().

If I Sessi on. Load() is called with Upgr ade Or Upgr adeNoWai t , and the requested object was not yet loaded by
the session, the object isloaded using SELECT ... FOR UPDATE. If Load() is called for an abject that is already
loaded with aless restrictive lock than the one requested, NHibernate calls Lock() for that object.

| Sessi on. Lock() performs a version number check if the specified lock mode is Read, Upgrade Or Up-
gr adeNoWai t . (In the case of Upgr ade Or Upgr adeNoWai t, SELECT ... FOR UPDATEisused.)

If the database does not support the requested lock mode, NHibernate will use an appropriate alternate mode
(instead of throwing an exception). This ensures that applications will be portable.

11.7. Connection Release Modes

The legacy (1.0.x) behavior of NHibernate in regards to ADO.NET connection management was that a | Ses-
si on would obtain a connection when it was first needed and then hold unto that connection until the session
was closed. NHibernate introduced the notion of connection release modes to tell a session how to handle its
ADO.NET connections. Note that the following discussion is pertinent only to connections provided through a
configured | Connect i onProvi der ; user-supplied connections are outside the breadth of this discussion. The
different release modes are identified by the enumerated values of NHi ber nat e. Connect i onRel easeMode:

* OnC ose - isessentialy the legacy behavior described above. The NHibernate session obtains a connection
when it first needs to perform some database access and holds unto that connection until the session is
closed.

e AfterTransaction - Saysto release connections after aNHi ber nat e. | Transact i on has completed.

The configuration parameter connect i on. r el ease_node is used to specify which release mode to use. The pos-
sible values:

e auto (the default) - equivalent to after_transacti on in the current release. It is rarely a good idea to
change this default behavior as failures due to the value of this setting tend to indicate bugs and/or invalid
assumptions in user code.

e on_cl ose - Saysto use Connect i onRel easeMbde. Ond ose. This setting is left for backwards compatibility,
but its use is highly discouraged.

e after_transaction - SayS t0 USe Connecti onRel easeMbde. Aft er Transact i on. Note that with Connec-
ti onRel easeMode. After Transacti on, if a session is considered to be in auto-commit mode (i.e. no trans-
action was started) connections will be released after every operation.

If your application manages transactions through .NET APIs such as Syst em Transacti ons library while not
using a compatible transaction factory (seetransaction. factory_cl ass in Section 3.5, “Optional configura-
tion properties’), Connect i onRel easeMode. Af t er Tr ansact i on may cause NHibernate to open and close sever-
al connections during one transaction, leading to unnecessary overhead and transaction promotion from local to
distributed. Specifying Connect i onRel easeMbde. Ond ose Will revert to the legacy behavior and prevent this
problem from occurring.

NHibernate 5.1 112

Transactions And Concurrency

11.8. Transaction scopes (System.Transactions)

Instead of using NHibernate | Tr ansacti on, Transact i onScope can be used. Please do not use both simultan-
eously. Using TransactionScope requires using a compatible transaction factory (see transac-
tion.factory_class in Section 3.5, “Optional configuration properties’). The default transaction factory sup-
ports scopes.

When using Tr ansact i onScope with NHibernate, you need to be aware of following points:

The session will enlist with the first scope in which the session is used (or opened). As of NHibernate v5.0,
it will enlist its connection in the transaction regardless of connection string Enl i st setting. Prior to v5.0, it
was relying on that setting being considered t r ue, and on acquiring the connection within the scope.

Sub-scopes are not supported. The session will be enlisted in the first scope within which it was used, until
this scope is committed or rollback. If auto-enlistment is enabled on the connection and the session used on
others scopes than the one in which it is currently enlisted, the connection may enlist in another scope, and
the session will then fail to useit.

As of NHibernate v5.0, session auto-enlistment can be disabled from the session builder obtained with
| Sessi onFact ory. Wt hOpti ons(), using the Aut oJoi nTransact i on option. The connection may still enlist
itself if connection string Enl i st setting isnot f al se. A session can explicitly join the current system trans-
action by calling | Sessi on. Joi nTransacti on().

As of NHibernate V5.0, FlushMde. Commit requires the configuration setting transac-
tion. use_connection_on_system events to be true for flushing from transaction scope commit. Other-
wise, it will be your responsibility to flush the session before completing the scope.

Using transacti on. use_connecti on_on_system events Can cause undesired transaction promotions to
distributed: it requires using a dedicated connection for flushing, and it delays session disposal (if done in-
side the scope) to the scope disposal. If you want to avoid this, set this setting to f al se and manually flush
your sessions.

As of NHibernate v5.0, Connect i onRel easeMbde. Aft er Transact i on has no more by default an "immedi-
ate" effect with transaction scopes. Previously, it was releasing the connection from transaction completion
events. But thisis not officially supported by Microsoft and this can cause issues especially with distributed
transactions.

Since v5.0, by default, the connection will be actually released after the scope disposal at the first session
usage involving a connection, or at the session closing, whichever come first. Alternatively, you may bi s-
connect () the session. (Requires Reconnect () before re-using the session.)

When using t ransact i on. use_connect i on_on_syst em event s, if the session is disposed within the scope,
the connection releasing will still occurs from transaction compl etion event.

As of NHibernate v5.0, using transaction scope and trying to use the session connection within After -
TransactionConpletion is forbidden and will raise an exception. If the setting transac-
tion. use_connection_on_system events iS fal se, it will forbid any connection usage from Bef or e-
Transact i onConpl et i on event too, when this event is triggered by a transaction scope commit or rollback.

NHibernate 5.1 113

Chapter 12. Interceptors and events

It is often useful for the application to react to certain events that occur inside NHibernate. This allows imple-
mentation of certain kinds of generic functionality, and extension of NHibernate functionality.

12.1. Interceptors

The Il nterceptor interface provides callbacks from the session to the application allowing the application to
inspect and/or manipulate properties of a persistent object before it is saved, updated, deleted or loaded. One
possible use for this is to track auditing information. For example, the following 11 nt er cept or automatically
sets the creat eTi mest amp When an 1 Audi t abl e is created and updates the | ast Updat eTi mest anp property
when an | Audi t abl e is updated.

You may either implement I 1 nt er cept or directly or (better) extend Enpt y!I nt er cept or.

usi ng System

usi ng NHi ber nat e;
usi ng NHi ber nat e. Type;

public class Auditlnterceptor : Enptylnterceptor {

private int updates;
private int creates;
private int |oads;

public override void OnDel ete(object entity,
obj ect id,
object[] state,
string[] propertyNanes,
I Type[] types)

{
/1 do not hi ng
}
public override bool OnFlushDirty(object entity,
obj ect id,
object[] currentState,
obj ect[] previousState,
string[] propertyNanes,
{ I Type[] types)
if (entity is [Auditable) {
updat es++;
for (int i=0; i < propertyNanmes.Length; i++) {
if ("lastUpdateTi nestanp”. Equal s(propertyNames[i])) {
currentState[i] = new DateTinme();
return true;
}
}
}
return false;
}
public override bool OnLoad(object entity,
obj ect id,
object[] state,
string[] propertyNanes,
{ I Type[] types)

if (entity is lAuditable) {
| oads++;

}

return fal se;

NHibernate 5.1 114

Interceptors and events

}
public override bool OnSave(object entity,
obj ect id,
object[] state,
string[] propertyNanes,
{ I Type[] types)
if (entity is lAuditable) {
Creat es++;
for (int i=0; i<propertyNanes.Length; i++) {
if ("createTimestanp". Equal s(propertyNanes[i])) {
state[i] = new DateTinme();
return true;
}
}
}
return false;
}
public override void AfterTransacti onConpl eti on(l Transacti on tx)
{
if (tx.WasCommitted) {
Syst em Consol e. Wi t eLi ne(
"Creations: " + creates +
Updates: " + updates +
Loads: " + |oads);
}
updat es=0;
creat es=0;
| oads=0;
}

Interceptors come in two flavors: | Sessi on-scoped and | Sessi onFact or y-scoped.

An | Sessi on-scoped interceptor is specified when a session is opened using one of the overloaded |1Session-
Factory.OpenSession() methods accepting an I 1 nt er cept or .

| Session session = sf.OpenSession(new Auditlnterceptor());

An | Sessi onFact or y-scoped interceptor is registered with the Confi gurati on object prior to building the
| Sessi onFact ory. In this case, the supplied interceptor will be applied to all sessions opened from that | Ses-

si onFact ory; thisis true unless a session is opened explicitly specifying the interceptor to use. | Sessi onFact -

or y-scoped interceptors must be thread safe, taking care to not store session-specific state since multiple ses-
sions will use this interceptor (potentially) concurrently.

new Configuration().Setlnterceptor(new Auditlnterceptor());

12.2. Event system

If you have to react to particular events in your persistence layer, you may also use the NHibernate2 event ar-
chitecture. The event system can be used in addition or as a replacement for interceptors.

Essentially all of the methods of the | Sessi on interface correlate to an event. You have a LoadEvent, a
Fl ushEvent , etc (consult the XML configuration-file XSD or the NHi ber nat e. Event namespace for the full list
of defined event types). When a request is made of one of these methods, the | Sessi on generates an appropri-
ate event and passes it to the configured event listeners for that type. Out-of-the-box, these listeners implement
the same processing in which those methods always resulted. However, you are free to implement a customiza-

NHibernate 5.1 115

Interceptors and events

tion of one of the listener interfaces (i.e., the LoadEvent is processed by the registered implementation of the
| LoadEvent Li st ener interface), in which case their implementation would be responsible for processing any
Load() requests made of the Sessi on.

The listeners should be considered effectively singletons, meaning, they are shared between requests, and thus
should not save any state as instance variables.

A custom listener should implement the appropriate interface for the event it wants to process and/or extend
one of the convenience base classes (or even the default event listeners used by NHibernate out-of-the-box as
their methods are declared virtual for this purpose). Custom listeners can either be registered programmatically
through the Conf i gur at i on object, or specified in the NHibernate configuration XML. Here's an example of a
custom load event listener:

public class MyLoadLi stener : |LoadEventLi stener

{

/1 this is the single nethod defined by the LoadEventLi stener interface
public void OnLoad(LoadEvent theEvent, LoadType | oadType)

{
if ('MySecurity.lsAuthorized(theEvent.EntityC assName, theEvent.Entityld)) {

t hrow new MySecurityException("Unaut hori zed access");

}

Y ou also need a configuration entry telling NHibernate to use the listener in addition to the default listener:

<hi ber nat e- confi gurati on>
<sessi on-factory>

<event type="I|oad">
<listener class="MLoadListener"/>
<l i stener class="NHi bernate. Event. Def aul t. Def aul t LoadEvent Li stener"/>
</ event >
</ sessi on-factory>
</ hi ber nat e- conf i gurati on>

Instead, you may register it programmatically:

Configuration cfg = new Configuration();
| LoadEvent Li stener[] stack =

new | LoadEvent Li stener[] { new MyLoadLi stener(), new Defaul t LoadEventListener() };
cfg. Event Li st eners. LoadEvent Li steners = stack

Listeners registered declaratively cannot share instances. If the same class name is used in multiple
<li stener/> elements, each reference will result in a separate instance of that class. If you need the capability
to share listener instances between listener types you must use the programmatic registration approach.

Why implement an interface and define the specific type during configuration? Well, a listener implementation
could implement multiple event listener interfaces. Having the type additionally defined during registration
makes it easier to turn custom listeners on or off during configuration.

NHibernate 5.1 116

Chapter 13. Batch processing

A naive approach to inserting 100 000 rows in the database using NHibernate might look like this:

using (1 Session session = sessi onFactory. OpenSessi on())
using (Il Transaction tx = session. Begi nTransacti on())

{
for (int i = 0; i < 100000; i++)
{
Cust oner customer = new Custoner(.....)
sessi on. Save(custoner);
}
tx. Commit();
}

This would fall over with an aut O Menor yExcept i on somewhere around the 50 000th row. That's because
NHibernate caches all the newly inserted cust orrer instances in the session-level cache.

In this chapter we'll show you how to avoid this problem. First, however, if you are doing batch processing, itis
absolutely critical that you enable the use of ADO batching, if you intend to achieve reasonable performance.
Set the ADO batch size to areasonable number (say, 10-50):

adonet . batch_si ze 20

Note that NHibernate disables insert batching at the ADO level transparently if you use ani dentity identifier
generator.

Y ou also might like to do this kind of work in a process where interaction with the second-level cache is com-
pletely disabled:

cache. use_second_| evel _cache fal se

However, thisis not absolutely necessary, since we can explicitly set the cacheMde to disable interaction with
the second-level cache.

13.1. Batch inserts

When making new objects persistent, you must Fl ush() and then d ear () the session regularly, to control the
size of thefirst-level cache.

using (| Session session = sessionFactory. openSessi on())
using (lTransaction tx = session. Begi nTransaction())

{
for (int i = 0; i < 100000; i++)
{
Cust oner custonmer = new Custoner(.....);
sessi on. Save(cust oner) ;
// 20, sanme as the ADO batch size
if (i %20 == 0)
[/ flush a batch of inserts and rel ease nmenory:
session. Fl ush();
session.d ear();
}
}
tx. Commt();
}

NHibernate 5.1 117

Batch processing

13.2. The StatelessSession interface

Alternatively, NHibernate provides a command-oriented API that may be used for streaming data to and from
the database in the form of detached objects. A | St at el essSessi on has no persistence context associated with
it and does not provide many of the higher-level life cycle semantics. In particular, a stateless session does not
implement a first-level cache nor interact with any second-level or query cache. It does not implement transac-
tional write-behind or automatic dirty checking. Operations performed using a stateless session do not ever cas-
cade to associated instances. Collections are ignored by a statel ess session. Operations performed via a statel ess
session bypass NHibernate's event model and interceptors. Stateless sessions are vulnerable to data aliasing ef-
fects, due to the lack of afirst-level cache. A stateless session is a lower-level abstraction, much closer to the
underlying ADO.

using (I Statel essSessi on session = sessi onFactory. OpenSt at el essSessi on())
using (Il Transaction tx = session.Begi nTransaction())

{

var custoners = session. Get NanedQuer y(" Get Cust oners")
. Enuner abl e<Cust oner >() ;
whil e (custoners. MoveNext ())

{

Cust oner custoner = custoners. Current;
cust oner . updateStuff(...);
sessi on. Updat e(cust oner) ;

}

tx. Comit();
}

Note that in this code example, the cust onrer instances returned by the query are immediately detached. They
are never associated with any persistence context.

Theinsert(), update() and del et e() operations defined by the St at el essSessi on interface are considered
to be direct database row-level operations, which result in immediate execution of a SQL | NSERT, UPDATE oOf
DELETE respectively. Thus, they have very different semantics to the save(), SaveOr Update() and Del et e()
operations defined by the | Sessi on interface.

13.3. DML-style operations

As aready discussed, automatic and transparent object/relational mapping is concerned with the management
of object state. This implies that the object state is available in memory, hence manipulating (using the SQL
Data Mani pul ati on Language (DML) statements. | NSERT, UPDATE, DELETE) data directly in the database will
not affect in-memory state. However, NHibernate provides methods for bulk SQL-style DML statement execu-
tion which are performed through the Hibernate Query Language (HQL). A Ling implementation is available
too.

The pseudo-syntax for UPDATE and DELETE statementsis. (UPDATE | DELETE) FROMP EntityName (WHERE
wher e_condi ti ons) ?. Some points to note:

e Inthefrom-clause, the FROM keyword is optional

» There can only be asingle entity named in the from-clause; it can optionally be aliased. If the entity nameis
aliased, then any property references must be qualified using that alias; if the entity name is not aliased,
thenitisillegal for any property referencesto be qualified.

¢ Nojoins (either implicit or explicit) can be specified in a bulk HQL query. Sub-queries may be used in the
where-clause; the sub-queries, themselves, may contain joins.

e Thewhere-clauseis also optional.

NHibernate 5.1 118

Batch processing

As an example, to execute an HQL UPDATE, usethe | Query. Execut eUpdat e() method:

using (| Session session = sessi onFactory. OpenSessi on())
using (Il Transaction tx = session. Begi nTransacti on())

{
string hqgl Update = "update Custoner c set c.nane = :newNane where c.name = :ol dNane";
/1 or string hql Update = "update Custoner set name = :newNane where nane = :ol dNane";
int updatedEntities = s.CreateQuery(hqgl Updat e)
.Set String("newNane", newNane)
.Set String("ol dNane", ol dNane)
. Execut eUpdat e() ;
tx. Commit();
}

HQL UPDATE statements, by default do not effect the version or the timestamp property values for the affected
entities. However, you can force NHibernate to properly reset the version or timestanp property values
through the use of aversioned updat e. Thisis achieved by adding the VERSI ONED keyword after the UPDATE

keyword.

using (1 Session session = sessi onFactory. OpenSession())
using (Il Transaction tx = session. Begi nTransacti on())

{
string hqgl Versi onedUpdate =
"updat e versioned Custoner set nane = :newName where name = : ol dNane";
int updatedEntities = s.CreateQuery(hqgl Update)
.Set String("newNanme", newNane)
.Set String("ol dNane", ol dNane)
. Execut eUpdat e() ;
tx. Commit();
}

Note that custom version types (NHi ber nat e. Usert ype. | User Ver si onType) are not allowed in conjunction
with aupdat e versi oned Statement.

To execute an HQL DELETE, use the same | Query. Execut eUpdat e() method:

using (| Session session = sessionFactory. OpenSessi on())
using (Il Transaction tx = session.Begi nTransaction())

{
string hgl Delete = "del ete Customer ¢ where c.nanme = :ol dNane";
/1 or String hql Delete = "del ete Custoner where nanme = : ol dNane";
int deletedEntities = s. Creat eQuery(hgl Del ete)
.Set String("ol dNane", ol dNane)
. Execut eUpdat e() ;
tx. Commit();
}

Thei nt valuereturned by the | Query. Execut eUpdat e() method indicate the number of entities effected by the
operation. Consider this may or may not correlate to the number of rows effected in the database. An HQL bulk
operation might result in multiple actual SQL statements being executed, for joined-subclass, for example. The
returned number indicates the number of actual entities affected by the statement. Going back to the example of
joined-subclass, a delete against one of the subclasses may actually result in deletes against not just the table to
which that subclass is mapped, but also the "root" table and potentially joined-subclass tables further down the
inheritance hierarchy.

The pseudo-syntax for | NSERT statementsis. | NSERT | NTO EntityNanme properties_|ist sel ect_statement.
Some points to note:

e Only the INSERT INTO ... SELECT ... form is supported; not the INSERT INTO ... VALUES ... form.

The properties list is analogous to the col um speci fi cation in the SQL | NSERT statement. For entities

NHibernate 5.1 119

Batch processing

involved in mapped inheritance, only properties directly defined on that given class-level can be used in the
properties list. Superclass properties are not allowed; and subclass properties do not make sense. In other
words, | NSERT statements are inherently non-polymorphic.

select_statement can be any valid HQL select query, with the caveat that the return types must match the
types expected by the insert. Currently, this is checked during query compilation rather than allowing the
check to relegate to the database. Note however that this might cause problems between NHibernate Types
which are equivalent as opposed to equal. This might cause issues with mismatches between a property
defined as a NHi ber nat e. Type. Dat eType and a property defined as a NHi ber nat e. Type. Ti nest anpType,
even though the database might not make a distinction or might be able to handle the conversion.

For the id property, the insert statement gives you two options. Y ou can either explicitly specify theid prop-
erty in the properties_list (in which case its value is taken from the corresponding select expression) or omit
it from the properties_list (in which case a generated value is used). This later option is only available when
using id generators that operate in the database; attempting to use this option with any "in memory" type
generators will cause an exception during parsing. Note that for the purposes of this discussion, in-database
generators are considered to be NHi ber nat e. | d. SequenceGener at or (and its subclasses) and any imple-
mentors of NHi bernate.|d.|PostinsertidentifierGenerator. The most notable exception here is
NH ber nat e. | d. Tabl eHi LoGener at or , which cannot be used because it does not expose a selectable way to
get itsvalues.

For properties mapped as either ver si on or ti nest anp, the insert statement gives you two options. You can
either specify the property in the properties list (in which case its value is taken from the corresponding se-
lect expressions) or omit it from the properties list (in which case the seed val ue defined by the NHi ber n-
at e. Type. | Ver si onType isused).

An example HQL | NSERT statement execution:

using (1 Session session = sessi onFactory. OpenSessi on())
using (Il Transaction tx = session. Begi nTransacti on())

{

var hgllnsert =
"insert into DelinquentAccount (id, nane) " +
"select c.id, c.nane from Custonmer c where ..."
int createdEntities = s. CreateQuery(hgllnsert)
. Execut eUpdat e() ;
tx. Commit();

NHibernate 5.1 120

Chapter 14. HQL: The Hibernate Query Language

NHibernate is equipped with an extremely powerful query language that (quite intentionally) looks very much
like SQL. But don't be fooled by the syntax; HQL is fully object-oriented, understanding notions like inherit-
ance, polymorphism and association.

14.1. Case Sensitivity

Queries are case-insensitive, except for names of .NET classes and properties. SO SeLeCT is the same as sELEct
isthe same as SELECT but Eg. FOOis not Eg. Foo and f oo. bar Set iSNot f oo. BARSET.

This manual uses lowercase HQL keywords. Some users find queries with uppercase keywords more readable,
but we find this convention ugly when embedded in C# code.

14.2. The from clause

The simplest possible NHibernate query is of the form:

from Eg. Cat

which simply returns al instances of the class Eg. Cat .

Most of the time, you will need to assigh an alias, since you will want to refer to the cat in other parts of the
query.

from Eg. Cat as cat

This query assigns the dlias cat to Cat instances, so we could use that alias later in the query. The as keyword
is optional; we could also write:

from Eg. Cat cat

Multiple classes may appear, resulting in a cartesian product or "cross' join.

from Fornul a, Paranet er
fromFornmula as form Parameter as param

It is considered good practice to name query aliases using an initial lowercase, consistent with naming stand-
ardsfor local variables (eg. donesti cCat).

14.3. Associations and joins

We may also assign aliases to associated entities, or even to elements of a collection of values, using aj oi n.

from Eg. Cat as cat
inner join cat.Mate as mate
left outer join cat.Kittens as kitten

fromEg.Cat as cat left join cat. Mate.Kittens as kittens

NHibernate 5.1 121

HQL: The Hibernate Query Language

fromFornmula formfull join form Paraneter param

The supported join types are borrowed from ANSI SQL

® inner join

e Jeft outer join

* right outer join

e full join (notusualy useful)

Theinner join,left outer joinandright outer join constructs may be abbreviated.

from Eg. Cat as cat
join cat.Mate as nate
left join cat.Kittens as kitten

In addition, a "fetch" join alows associations or collections of values to be initialized along with their parent
objects, using a single select. This is particularly useful in the case of a collection. It effectively overrides the
outer join and lazy declarations of the mapping file for associations and collections. See Section 20.1,
“Fetching strategies’ for more information.

from Eg. Cat as cat
inner join fetch cat. Mate
left join fetch cat.Kittens

The associated objects are not returned directly in the query results. Instead, they may be accessed via the par-
ent object.

It is possible to create a cartesian product by join fetching more than one collection in a query, so take care in
this case. Join fetching multiple collection roles is also disabled for bag mappings. Note also that the f et ch
construct may not be used in queries called using Enuner abl e() . Finally, notethat ful I join fetch andri ght
join fetch arenot meaningful.

14.4. The select clause

Thesel ect clause picks which objects and propertiesto return in the query result set. Consider:

sel ect mate
from Eg. Cat as cat
inner join cat.Mate as mate

The query will select mat es of other cat s. Actually, you may express this query more compactly as:

sel ect cat.Mate from Eg. Cat cat

You may even select collection elements, using the special el ement s function. The following query returns all
kittens of any cat.

sel ect elenents(cat.Kittens) from Eg. Cat cat

Queries may return properties of any value type including properties of component type:

sel ect cat.Name from Eg. Donesti cCat cat
where cat.Nanme like "fri%

sel ect cust. Nane. First Name from Custoner as cust

NHibernate 5.1 122

HQL: The Hibernate Query Language

Queries may return multiple objects and/or properties as an array of type obj ect []

sel ect nother, offspr, mate. Nanme
from Eg. Donesti cCat as not her
inner join nother.Mate as mate
left outer join nother.Kittens as offspr

or as an actual type-safe object

sel ect new Fami | y(nother, mate, offspr)
from Eg. Donesti cCat as not her

join nother.Mate as nate

left join nother.Kittens as of fspr

assuming that the class Fani | y has an appropriate constructor.

14.5. Aggregate functions

HQL queries may even return the results of aggregate functions on properties:

sel ect avg(cat.Wight), sun{cat.Wight), max(cat.Wight), count(cat)
from Eg. Cat cat

Collections may also appear inside aggregate functionsin the sel ect clause.

sel ect cat, count(elenents(cat.Kittens))
from Eg. Cat cat group by cat.ld, cat.Weight,

The supported aggregate functions are

* avg(...), sun(...), mn(...), mx(...)

e count(*)

e count(...), count(distinct ...), count(all...)

Thedi stinct andal | keywords may be used and have the same semantics asin SQL.

sel ect distinct cat.Nane from Eg. Cat cat

sel ect count(distinct cat.Nanme), count(cat) from Eg. Cat cat

14.6. Polymorphic queries

A query like:

from Eg. Cat as cat

returns instances not only of cat, but also of subclasses like Dorrest i cCat . NHibernate queries may name any
NET class or interface in the f r omclause. The query will return instances of all persistent classes that extend
that class or implement the interface. The following query would return all persistent objects:

from System Obj ect o

Theinterface | Named might be implemented by various persistent classes:

NHibernate 5.1 123

HQL: The Hibernate Query Language

from Eg. Naned n, Eg. Naned m where n. Nane = m Name

Note that these last two queries will require more than one SQL SELECT. This means that the or der by clause
does not correctly order the whole result set.

In order to use non-mapped base classes or interfaces in HQL queries, they have to be imported. See Sec-
tion 5.1.21, “import” for more information.

14.7. The where clause

The wher e clause allows you to narrow the list of instances returned.

from Eg. Cat as cat where cat.Nanme='Fritz'

returns instances of cat named 'Fritz'.

sel ect foo
from Eg. Foo foo, Eg.Bar bar
where foo. StartDate = bar. Date

will return all instances of Foo for which there exists an instance of Bar with a Dat e property equal to the
Start Dat e property of the Foo. Compound path expressions make the wher e clause extremely powerful. Con-
sider:

from Eg. Cat cat where cat.Mate. Nane i s not null

This query tranglates to an SQL query with atable (inner) join. If you were to write something like

from Eg. Foo foo
where foo. Bar. Baz. Custoner. Address. City is not null

you would end up with aquery that would require four table joinsin SQL.
The = operator may be used to compare not only properties, but also instances:

fromEg. Cat cat, Eg.Cat rival where cat.Mate = rival.Mte
sel ect cat, nate

fromEg. Cat cat, Eg.Cat mate
where cat.Mate = nate

The special property (lowercase) i d may be used to reference the unique identifier of an object. (You may aso
use its property name.)

from Eg. Cat as cat where cat.id = 123
from Eg. Cat as cat where cat.Mate.id = 69
The second query is efficient. No table join is required!

Properties of composite identifiers may also be used. Suppose Per son has a composite identifier consisting of
Count ry and Medi car eNunber .

from Bank. Per son person
where person.id.Country = 'AU
and person.id. Medi careNunber = 123456

NHibernate 5.1 124

HQL: The Hibernate Query Language

f rom Bank. Account account
where account. Oaner.id. Country = ' AU
and account. Omer.id. Medi careNunber = 123456

Once again, the second query requires no table jain.

Likewise, the special property cl ass accesses the discriminator value of an instance in the case of polymorphic
persistence. A .Net class name embedded in the where clause will be translated to its discriminator value.

from Eg. Cat cat where cat.class = Eg. Donesti cCat

You may also specify properties of components or composite user types (and of components of components,
etc). Never try to use a path-expression that ends in a property of component type (as opposed to a property of a
component). For example, if st or e. Qwner isan entity with a component Addr ess

store. Omer. Address. City /'l okay
st or e. Oaner . Addr ess /1 error!

An "any" type has the specia propertiesid and cl ass, alowing us to express a join in the following way
(where Audi t Log. | t emis a property mapped with <any>).

from Eg. AuditLog | og, Eg.Paynent paynent
where log.ltemclass = 'Eg. Paynent, Eg, Version=...

and log.ltemid = paynent.id

Notice that 1 og. Item cl ass and payment . cl ass would refer to the values of completely different database
columnsin the above query.

14.8. Expressions

Expressions allowed in the wher e clause include most of the kind of things you could writein SQL:

e mathematical operators+, -, *, /

* binary comparison operators=, >=, <=, <>, !=, like
» logical operationsand, or, not

* string concatenation ||

e SQL scalar functions like upper () and | ower ()

e Parentheses () indicate grouping

* in,between,is null

e positional parameters ?

e named parameters: nane, : start_date, : x1

* SQL literals' foo' , 69, ' 1970- 01-01 10: 00: 01. 0’
* Enumeration values and constants Eg. Col or . Tabby

i n and bet ween may be used as follows:

from Eg. Donesti cCat cat where cat.Nane between 'A and 'B

from Eg. DonesticCat cat where cat.Nane in ('Foo', 'Bar', 'Baz')
and the negated forms may be written

from Eg. Donesti cCat cat where cat.Name not between 'A" and 'B

from Eg. Donesti cCat cat where cat.Nane not in ('Foo', 'Bar', 'Baz')

NHibernate 5.1 125

HQL: The Hibernate Query Language

Likewise,is null andis not null may be used to test for null values.
Booleans may be easily used in expressions by declaring HQL query substitutions in NHibernate configuration:

<property nane="query.substitutions">true 1, fal se 0</property>

Thiswill replace the keywordst r ue and f al se with the literals 1 and o in the trandlated SQL from this HQL :

from Eg. Cat cat where cat.Alive = true

Y ou may test the size of a collection with the special property si ze, or the special si ze() function.

fromEg. Cat cat where cat.Kittens.size > 0

from Eg. Cat cat where size(cat.Kittens) > 0

For indexed collections, you may refer to the minimum and maximum indices using ni ni ndex and max! ndex.
Similarly, you may refer to the minimum and maximum elements of a collection of basic type using ni nEl e-
ment and naxEl ement .

from Cal endar cal where cal. Holidays. maxEl ement > current date

There are also functional forms (which, unlike the constructs above, are not case sensitive):

from Order order where maxi ndex(order.ltenms) > 100

from Order order where m nel ement (order.|ltemnms) > 10000

The SQL functionsany, sonme, all, exists, in aresupported when passed the element or index set of acol-
lection (el ement s and i ndi ces functions) or the result of a sub-query (see below).

sel ect nother from Eg. Cat as nother, Eg.Cat as kit
where kit in el enents(nother.Kittens)

sel ect p from Eg. NaneLi st |ist, Eg.Person p
where p. Nane = sone el ements(list. Nanes)

from Eg. Cat cat where exists el enents(cat.Kittens)
from Eg. Pl ayer p where 3 > all el enments(p. Scores)

from Eg. Show show where 'fizard' in indices(show Acts)

Note that these constructs - si ze, el enent s, i ndi ces, ni nl ndex, maxl ndex, mi nEl ement, naxEl enent - have
certain usage restrictions:

e inawhere clause: only for databases with sub-selects
e inasel ect clause: only el ement s and i ndi ces make sense

Elements of indexed collections (arrays, lists, maps) may be referred to by index (in awhere clause only):

from Order order where order.ltens[0].id = 1234

sel ect person from Person person, Cal endar cal endar
wher e cal endar. Hol i days[' nati onal day'] = person. BirthDay
and person. Nationality. Cal endar = cal endar

select itemfromlitemitem O der order
where order.ltens[order.Deliveredltem ndices[0]] = itemand order.id = 11

NHibernate 5.1 126

HQL: The Hibernate Query Language

select itemfromlitemitem O der order
where order.|tens[maxindex(order.itens)] = itemand order.id = 11

The expressioninside[] may even be an arithmetic expression.

select itemfromltemitem O der order
where order.|ltems[size(order.ltems) - 1] =item

HQL also provides the built-in i ndex() function, for elements of a one-to-many association or collection of
values.

select item index(itenm) from O der order
join order.ltens item
where index(iten) < 5

Scalar SQL functions supported by the underlying database may be used

from Eg. Domesti cCat cat where upper(cat.Name) |ike 'FRI %

If you are not yet convinced by all this, think how much longer and |ess readable the following query would be
in SQL:

sel ect cust
from Product prod,
Store store
i nner join store.Custoners cust
where prod. Name = 'w dget'
and store.Location.Nanme in (' Ml bourne', 'Sydney')
and prod = all elenments(cust. CurrentOrder. Lineltens)

Hint: something like

SELECT cust.nane, cust.address, cust.phone, cust.id, cust.current_order

FROM cust oners cust,
stores store,
| ocations | oc,
store_custoners sc,
product prod

WHERE prod. nanme = 'wi dget'
AND store.loc_id = 1loc.id

AND | oc. nane I N (' Mel bourne', 'Sydney')
AND sc.store_id = store.id
AND sc.cust _id = cust.id
AND prod.id = ALL(
SELECT item prod_id
FROM line_itenms item orders o
WHERE itemorder_id = o.id

AND cust.current_order = o.id

14.9. The order by clause

The list returned by aquery may be ordered by any property of areturned class or components:

from Eg. Donesti cCat cat
order by cat.Nane asc, cat.Wight desc, cat.Birthdate

The optional asc or desc indicate ascending or descending order respectively.

NHibernate 5.1 127

HQL: The Hibernate Query Language

14.10. The group by clause

A query that returns aggregate values may be grouped by any property of areturned class or components:

sel ect cat. Col or, sunm(cat.Wight), count(cat)
from Eg. Cat cat
group by cat. Col or

select foo.id, avg(el enents(foo.Narmes)), max(indices(foo.Nanes))
from Eg. Foo foo
group by foo.id

Note: You may usetheel enent s and i ndi ces constructs inside a select clause, even on databases with no sub-
Selects.

A havi ng clauseis also allowed.

sel ect cat.color, sum(cat.Wight), count(cat)

from Eg. Cat cat

group by cat. Col or

havi ng cat. Col or in (Eg.Col or. Tabby, Eg. Col or. Bl ack)

SQL functions and aggregate functions are allowed in the havi ng and or der by clauses, if supported by the un-
derlying database (ie. not in MySQL).

sel ect cat
from Eg. Cat cat
join cat.Kittens kitten
group by cat.ld, cat.Nane, cat.OQher, cat.Properties
havi ng avg(kitten. Wi ght) > 100
order by count(kitten) asc, sun(kitten.Wight) desc

Note that neither the group by clause nor the order by clause may contain arithmetic expressions. Also note
that NHibernate currently does not expand a grouped entity, so you can't write gr oup by cat if al properties of
cat are non-aggregated. Y ou haveto list all non-aggregated properties explicitly.

14.11. Sub-queries

For databases that support sub-selects, NHibernate supports sub-queries within queries. A sub-query must be
surrounded by parentheses (often by an SQL aggregate function call). Even correlated sub-queries (sub-queries
that refer to an diasin the outer query) are allowed.

from Eg. Cat as fatcat
where fatcat.Wight > (

sel ect avg(cat.Wight) from Eg. Donesti cCat cat
)

from Eg. Donesti cCat as cat
where cat. Name = sone (

sel ect nane. Ni ckNane from Eg. Nane as nane
)

from Eg. Cat as cat
where not exists (

fromeg.Cat as mate where nate. Mate = cat
)

from Eg. Donesti cCat as cat
where cat. Name not in (
sel ect nane. Ni ckNane from Eg. Nane as nane

NHibernate 5.1 128

HQL: The Hibernate Query Language

14.12. HQL examples

NHibernate queries can be quite powerful and complex. In fact, the power of the query language is one of
NHibernate's main selling points. Here are some example queries very similar to queries that | used on a recent
project. Note that most queries you will write are much simpler than these!

The following query returns the order id, number of items and total value of the order for al unpaid ordersfor a
particular customer and given minimum total value, ordering the results by total value. In determining the
prices, it uses the current catalog. The resulting SQL query, against the ORDER, ORDER_LI NE, PRODUCT, CATALOG
and PRI CE tables has four inner joins and an (uncorrel ated) subselect.

sel ect order.id, sun(price.Arount), count(item
from Order as order
join order.Lineltens as item
join item Product as product,
Cat al og as cat al og
join catal og. Prices as price
where order.Paid = fal se
and order. Custonmer = :custoner
and price. Product = product
and catal og. Effecti veDate < sysdate
and catal og. EffectiveDate >= all (
sel ect cat.EffectiveDate
from Catal og as cat
where cat. EffectiveDate < sysdate
)
group by order
havi ng sun(price. Amount) > :m nAnmount
order by sun(price. Amount) desc

What amonster! Actually, inreal life, I'm not very keen on sub-queries, so my query was really more like this:

sel ect order.id, sun(price.anmount), count(item
from Order as order

join order.Lineltens as item

join item Product as product,

Cat al og as catal og

join catal og. Prices as price
where order.Paid = fal se

and order. Custonmer = :custoner
and price. Product = product
and catal og = : current Cat al og

group by order
havi ng sunm(price. Amount) > :m nAmount
order by sun{price. Anbunt) desc

The next query counts the number of paymentsin each status, excluding all payments in the Awai t i ngAppr oval
status where the most recent status change was made by the current user. It trandates to an SQL query with two
inner joins and a correlated subselect against the PAYMENT, PAYMENT_STATUS and PAYMENT_STATUS_ CHANGE
tables.

sel ect count (paynent), status. Nane
from Paynent as paynent
join payment. Current Status as status
join paynent. St at usChanges as st atusChange
where paynent. St at us. Name <> Paynent St at us. Awai t i ngAppr oval
or (
stat usChange. Ti neStanmp = (
sel ect max(change. Ti neSt anp)

NHibernate 5.1 129

HQL: The Hibernate Query Language

f rom Paynent St at usChange change
wher e change. Paynent = paynent

)

and st atusChange. User <> :currentUser
)
group by status.Nane, status. SortOrder
order by status. Sort O der

If I would have mapped the st at usChanges collection as a list, instead of a set, the query would have been
much simpler to write.

sel ect count (paynent), status. Nane
from Paynent as paymnent
join paynment. Current Status as status
wher e paynent. Status. Nane <> Paynent St at us. Awai ti ngAppr oval
or paynent. St at usChanges[nmaxl| ndex(paynent. St at usChanges)].User <> :currentUser
group by status.Nane, status. SortOrder
order by status. Sort O der

The next query uses the MS SQL Server i sNul | () function to return al the accounts and unpaid payments for
the organization to which the current user belongs. It trandates to an SQL query with three inner joins, an outer
join and a subselect against the ACCOUNT, PAYMENT, PAYMENT_STATUS, ACCOUNT_TYPE, ORGANI ZATI ON and
ORG_USER tables.

sel ect account, paynent
from Account as account
I eft outer join account.Paynents as payment
where :currentUser in el enents(account. Hol der. Users)
and Paynent St atus. Unpai d = i sNul | (payment. Current St at us. Name, Payment St at us. Unpai d)
order by account. Type. Sort Order, account. Account Nunber, paynent. DueDat e

For some databases, we would need to do away with the (correlated) subselect.

sel ect account, paynent
from Account as account
join account. Hol der. Users as user
|l eft outer join account.Paynents as paynment
where :currentUser = user
and Paynent St atus. Unpaid = i sNul | (paynent. Current St at us. Nane, Paynent St at us. Unpai d)
order by account. Type. Sort Order, account.Account Nunber, paynent. DueDate

14.13. Tips & Tricks

Y ou can count the number of query results without actually returning them:

var count = session.CreateQuery("select count(*) from....").UniqueResult<long>();

To order aresult by the size of a collection, use the following query:

sel ect usr.id, usr.Name
from User as usr
left join usr. Messages as nsg
group by usr.id, usr.Nane
order by count (nsg)

If your database supports sub-selects, you can place a condition upon selection size in the where clause of your
query:

from User usr where size(usr.Messages) >= 1

NHibernate 5.1 130

HQL: The Hibernate Query Language

If your database doesn't support sub-selects, use the following query:

sel ect usr.id, usr.Nane
from User usr

join usr.Mssages nsg
group by usr.id, usr.Nanme
havi ng count(nsg) >= 1

Asthis solution can't return a User with zero messages because of the inner join, the following form is also use-
ful:

sel ect usr.id, usr.Nanme
from User as usr
I eft join usr.Messages as nsg
group by usr.id, usr.Nane
havi ng count(nsg) = 0

Properties of an object can be bound to named query parameters:

| Query q =

s.CreateQuery("fromfoo in class Foo where foo. Name=: Name and foo. Si ze=: Si ze") ;
g. Set Properties(fooBean); // fooBean has properties Nane and Size
var foos = q.List<Foo>();

Collections are pageable by using the | Query interface with afilter:

lQuery q = s.CreateFilter(collection, ""); // the trivial filter
g. set MaxResul t s(PageSi ze) ;

g. set Fi rst Resul t (PageSi ze * pageNunber);

var page = (. List<Cat>();

Collection elements may be ordered or grouped using a query filter:

var orderedCol |l ection = s
.CreateFilter(collection, "order by this.Anpunt")
. Li st<Cat>();
var counts = s
.CreateFilter(collection,
"sel ect this.Type, count(this) group by this.Type")
. Li st<object[]>();

NHibernate 5.1 131

Chapter 15. Criteria Queries

NHibernate features an intuitive, extensible criteria query API.

15.1. Creating an I Griteria instance

The interface NHi ber nate. | Cri t eri a represents a query against a particular persistent class. The | Sessionisa
factory for | Criteri a instances.

ICriteria crit = sess.CreateCriteria<Cat>();
crit.Set MaxResul t s(50);
var cats = crit.List<Cat>();

15.2. Narrowing the result set

An individual query criterion is an instance of the interface NHi ber nat e. Expression. | Criterion. The class
NH ber nat e. Expr essi on. Expr essi on defines factory methods for obtaining certain built-in1 Cri t eri on types.

var cats = sess.CreateCriteria<Cat>()
. Add(Expression. Li ke("Name", "Fritz%))
. Add(Expression. Between(" Wi ght", m nWight, maxWeight))
.List<Cat>();

Expressions may be grouped logically.

var cats = sess.CreateCriteria<Cat>()
. Add(Expression.Like("Nane", "Fritz%))
. Add(Expression. O (
Expression. Eq("Age", 0),
Expression. | sNul | ("Age")

))
. Li st<Cat>();

var cats = sess.CreateCriteria<Cat>()
. Add(Expression.In("Nane", new String[] { "Fritz", "lzi", "Pk" }))
. Add(Expression. Di sjunction()
. Add(Expression.|sNull ("Age"))

. Add(Expression. Eq("Age", 0))

. Add(Expression. Eq("Age", 1))

. Add(Expression. Eq("Age", 2))
))
.List<Cat>();

There are quite arange of built-in criterion types (Expr essi on subclasses), but one that is especially useful lets
you specify SQL directly.

/1 Create a string paraneter for the Sqgl String bel ow
var cats = sess.CreateCriteria<Cat>()
. Add(Expression. Sgl ("l ower ({alias}.Nane) |ike |lower(?)",
"Fritz%, NH bernateUtil.String))
.List<Cat>();

The{al i as} placeholder with be replaced by the row alias of the queried entity.

NHibernate 5.1 132

Criteria Queries

15.3. Ordering the results

Y ou may order the results using NHi ber nat e. Expr essi on. Or der .

var cats = sess.CreateCriteria<Cat>()
. Add(Expression. Li ke("Nanme", "F%)
. AddOrder (Order. Asc(" Nane"))
. AddOrder (Order. Desc("Age"))
. Set MaxResul t s(50)
.List<Cat>();

15.4. Associations

Y ou may easily specify constraints upon related entities by navigating associations using Creat eCri teri a() .

var cats = sess.CreateCriteria<Cat>()
. Add(Expression. Li ke("Nanme", "F%)
.CreateCriteria("Kittens")
. Add(Expression. Li ke("Nanme", "F%))
. List<Cat>();

Note that the second Creat eCriteria() returns anew instance of | Cri teri a, which refers to the elements of
theki tt ens collection.

The following, alternate form is useful in certain circumstances.

var cats = sess.CreateCriteria<Cat>()
.CreateAlias("Kittens", "kt")
.CreateAlias("Mate", "nt")
. Add(Expression. EqProperty("kt.Name", "nt.Nane"))
.List<Cat>();

(CreateAl i as() doesnot create anew instanceof I Criteri a.)

Note that the kittens collections held by the cat instances returned by the previous two queries are not pre-
filtered by the criterial If you wish to retrieve just the kittens that match the criteria, you must use Set Resul t -
Transforner(Transformers. Ali asToEntityMap).

var cats = sess.CreateCriteria<Cat>()
.CreateCriteria("Kittens", "kt")
. Add(Expression. Eq("Nanme", "F%))
. Set Resul t Transf or mer (Tr ansf or ners. Al i asToEnt i t yMap)
.List<IDictionary>();
foreach (IDictionary map in cats)

{
Cat cat = (Cat) map[CriteriaSpecification. RootAlias];

Cat kitten = (Cat) map["kt"];

Note that for retrieving just kittens you can also use an entity projection. See Section 15.8, “Projections, ag-
gregation and grouping” for more information.

15.5. Join entities without association (Entity joins or ad hoc
joins)

NHibernate 5.1 133

Criteria Queries

In criteria you have the ability to define ajoin to any entity, not just through a mapped association. To achieve
it, use Creat eEntityAlias and CreateEntityCriteri a. By example:

I Li st <Cat > uni quel yNanedCats = sess.CreateCriteria<Cat>("c")
.CreateEntityAlias(

"joi nedCat",

Restrictions. And(
Restrictions. EQProperty("c. Name", "joi nedCat. Nane"),
Restrictions. Not EQProperty("c.1d", "joinedCat.1d")),

Joi nType. Lef t Qut er Joi n,

typeof (Cat) . Ful | Nane)
. Add(Restrictions.IsNull ("joinedCat.Id"))
.List();

15.6. Dynamic association fetching

Y ou may specify association fetching semantics at runtime using Set Fet chMode() .

var cats = sess.CreateCriteria<Cat>()
. Add(Expression.Like("Nane", "Fritz%))
. Set Fet chivbde(" Mat e", Fet chMbde. Eager)
. Set Fet chMbde("Ki ttens", FetchMode. Eager)
.List<Cat>();

This query will fetch both mvat e and Ki t t ens by outer join. See Section 20.1, “Fetching strategies’ for more in-
formation.

15.7. Example queries

The class NHi ber nat e. Expr essi on. Exanpl e alows you to construct a query criterion from a given instance.

Cat cat new Cat ();

cat . Sex B

cat. Col or = Col or. Bl ack;

var results = session.CreateCriteria<Cat>()
. Add(Exanpl e. Create(cat))
.List<Cat>();

Version properties, identifiers and associations are ignored. By default, null-valued properties and properties
which return an empty string from the call to ToSt ri ng() are excluded.

Y ou can adjust how the Exanpl e is applied.

Exanpl e exanpl e = Exanpl e. Creat e(cat)

. Excl udeZer oes() [/ exclude null- or zero-valued properties

. Excl udeProperty("Color") //exclude the property naned "col or"

. I gnoreCase() /I performcase insensitive string comparisons
. Enabl eLi ke(); /luse like for string conparisons

var results = session.CreateCriteria<Cat>()
. Add(exanpl e)
.List<Cat>();

Y ou can even use examples to place criteria upon associated objects.

var results = session.CreateCriteria<Cat>()
. Add(Exanpl e.Create(cat))
.CreateCriteria("Mte")
. Add(Exanple.Create(cat.Mate))
. Li st<Cat>();

NHibernate 5.1 134

Criteria Queries

15.8. Projections, aggregation and grouping

The class NHi ber nat e. Expr essi on. Proj ect i ons isafactory for | Proj ect i on instances. We apply a projection
to aquery by calling Set Pr oj ecti on().

var results = session.CreateCriteria<Cat>()
. Set Proj ection(Projections. RowCount ())
. Add(Expression. Eq("Col or", Col or.BLACK))
.List<int>();

var results = session.CreateCriteria<Cat>()
. Set Proj ection(Projections.ProjectionList()
. Add(Projections. RowCount ())
. Add(Projections. Avg("Wight"))
. Add(Projections. Max("Weight"))
. Add(Projections. GoupProperty("Color"))

)
. Li st <obj ect[]>();

Thereisno explicit "group by" necessary in acriteria query. Certain projection types are defined to be grouping
projections, which also appear in the SQL gr oup by clause.

An aias may optionaly be assigned to a projection, so that the projected value may be referred to in restrictions
or orderings. Here are two different waysto do this:

var results = session.CreateCriteria<Cat>()
. Set Proj ection(Projections.Alias(Projections. GoupProperty(“Color"), "colr"))
. AddOrder(Order.Asc("colr"))
.List<string>();

var results = session.CreateCriteria<Cat>()
. Set Proj ection(Projections.GoupProperty("Color").As("colr"))
. AddOrder(Order.Asc("colr"))
.List<string>();

TheAlias() and As() methods simply wrap a projection instance in another, aliased, instance of | Proj ecti on.
As a shortcut, you can assign an alias when you add the projection to a projection list:

var results = session.CreateCriteria<Cat>()
. Set Proj ection(Projections. ProjectionList()
. Add(Projections. RowCount (), "catCountByCol or")
. Add(Projections. Avg("Wight"), "avgWight")
. Add(Projections. Max("Wight"), "maxWight")
. Add(Projections.GoupProperty("“Color"), "color")

)

. AddOr der (Order. Desc("cat Count ByCol or"))
. AddOrder (Order. Desc("avgWight"))

. Li st<object[]>();

var results = session.CreateCriteria(typeof(DonesticCat), "cat")
.CreateAlias("kittens", "kit")
.Set Proj ection(Projections.ProjectionList()
. Add(Projections.Property("cat.Nane"), "catNanme")
.Add(Projections.Property("kit.Name"), "kitNanme")

)
.AddOrder (Order. Asc("cat Nanme"))

. AddOrder (Order. Asc("kit Name"))
. Li st<object[]>();

Y ou can also add an entity projection to a criteria query:

NHibernate 5.1 135

Criteria Queries

var kittens = sess.CreateCriteria<Cat>()
.CreateCriteria("Kittens", "kt")
. Add(Expr essi on. Eq(" Nane", "F%))
. Set Proj ection(Projections. Entity(typeof(Cat), "kt"))
.List();

var cats = sess.CreateCriteria<Cat>()
.CreateCriteria("Kittens", "kt")
. Add(Expr essi on. Eq(" Name", "F%))
. Set Proj ecti on(
Proj ections. RootEntity(),
Proj ections. Entity(typeof(Cat), "kt"))
. Li st<object[]>();

foreach (var objs in cats)

{
Cat cat = (Cat) objs[O0];
Cat kitten = (Cat) objs[1];

See Section 16.9, “Entities Projection” for more information.

15.9. Detached queries and sub-queries

The Det achedCri teri a class lets you create a query outside the scope of a session, and then later execute it us-
ing some arbitrary | Sessi on.

Det achedCriteria query = DetachedCriteria. For<Cat>()
. Add(Expression. Eq("sex", 'F));

using (I Session session =)

using (Il Transaction txn = session. Begi nTransaction())

{
var results = query. Get Execut abl eCriteri a(session). Set MaxResul t s(100). Li st<Cat >();
txn. Commit();

A DetachedCriteria may also be used to express a sub-query. ICriterion instances involving sub-queries may
be obtained via Subqueri es.

Det achedCriteria avgWight = DetachedCriteria. For<Cat>()
. Set Proj ection(Projections. Avg("Wight"));
session. CreateCriteria<Cat >()
. Add(Subqueries. G ("Wight", avgWight))
. List<Cat>();

Det achedCriteria weights = DetachedCriteria. For<Cat>()
.SetProjection(Projections.Property("Wight"));
session. CreateCriteria<Cat>()
. Add(Subqueries.GeAl | ("Weight", weights))
.List<Cat>();

Even correlated sub-queries are possible:

Det achedCriteria avgWi ght For Sex = Det achedCriteria. For<Cat >("cat2")
. Set Proj ection(Projections. Avg("Wight"))
. Add(Expression. EqProperty("cat2. Sex", "cat.Sex"));
session. CreateCriteri a(typeof (Cat), "cat")
. Add(Subqueries. G ("weight", avgWei ght For Sex))
. List<Cat>();

NHibernate 5.1 136

Chapter 16. QueryOver Queries

The ICriteria APl is NHibernate's implementation of Query Object. NHibernate 3.0 introduces the QueryOver
API, which combines the use of Extension Methods and Lambda Expressions (both new in .Net 3.5) to provide
astatically type-safe wrapper round the I Criteria API.

QueryOver uses Lambda Expressions to provide some extra syntax to remove the 'magic strings from your
|Criteria queries.

So, for example:

. Add(Expr essi on. Eq(" Nanme", "Smith"))

becomes:

. Wher e<Person>(p => p. Name == "Sm th")

With this kind of syntax there are no 'magic strings, and refactoring tools like 'Find All References, and 'Re-
factor->Rename' work perfectly.

Note: QueryOver isintended to remove the references to 'magic strings from the I Criteria API while maintain-
ing it's opaqueness. It isnot a LINQ provider; NHibernate has a built-in Ling provider for this.

16.1. Structure of a Query

Queries are created from an 1 Session using the syntax:

| Li st<Cat> cats =
sessi on. Quer yOver <Cat >()
.Where(c => c. Namre == "Max")
.List();

Detached QueryOver (analogous to DetachedCriteria) can be created, and then used with an | Session using:

QueryOver <Cat > query =
QueryQOver. O <Cat >()
.Were(c => c. Name == "Paddy");

I Li st<Cat> cats =
query. Get Execut abl eQuer yOver (sessi on)
.List();

Queries can be built up to use restrictions, projections, and ordering using a fluent inline syntax:

var cat Names =
sessi on. Quer yOver <Cat >()
. WhereRestrictionOn(c => c. Age) .| sBet ween(2). And(8)
. Sel ect (¢ => c. Nane)
.OrderBy(c => c. Nane) . Asc
.List<string>();

16.2. Simple Expressions

NHibernate 5.1 137

QueryOver Queries

The Restrictions class (used by |Criteria) has been extended to include overloads that alow Lambda Expression
syntax. The Where() method works for simple expressions (<, <=, ==, !=, >, >=) so instead of:

ICriterion equal Criterion = Restrictions. Eq("Name", "Max")

Y ou can write:

ICriterion equal Criterion = Restrictions. Were<Cat>(c => c. Nanme == "Max")

Since the QueryOver class (and 1QueryOver interface) is generic and knows the type of the query, there is an
inline syntax for restrictions that does not require the additional qualification of class name. So you can also
write:

var cats =
sessi on. Quer yOver <Cat >()
.Where(c => c. Name == "Max")
.And(c => c. Age > 4)
.List();

Note, the methods Where() and And() are semantically identical; the And() method is purely to alow Query-
Over to look similar to HQL/SQL.

Boolean comparisons can be made directly instead of comparing to true/false:

.Where(p => p.IsParent)
.And(p => !p.IsRetired)

Simple expressions can also be combined using the || and & & operators. So [Criterialike:

. Add(Restrictions. And(
Restrictions. Eq(" Nane", "test nane"),
Restrictions. O (
Restrictions. & ("Age", 21),
Restrictions. Eq("HasCar", true))))

Can be written in QueryOver as:

.\Were(p => p. Nane == "test nane" && (p.Age > 21 || p.HasCar))

Each of the corresponding overloads in the QueryOver APl allows the use of regular ICriterion to alow access
to private properties.

. Where(Restrictions. Eq("Name", "Max"))

It is worth noting that the QueryOver API is built on top of the ICriteria API. Internally the structures are the
same, so at runtime the statement below, and the statement above, are stored as exactly the same | Criterion. The
actual Lambda Expression is not stored in the query.

NHibernate 5.1 138

QueryOver Queries

.Where(c => c. Name == "Max")

16.3. Additional Restrictions

Some SQL operators/functions do not have a direct equivalent in C#. (e.g., the SQL where nane Iike
' vmanna%). These operators have overloads for QueryOver in the Restrictions class, so you can write:

.Where(Restrictions. On<Cat>(c => c. Nane). | sLi ke("%anna%))

Thereisalso an inline syntax to avoid the qualification of the type:

.WhereRestrictionOn(c => c. Nane) . | sLi ke(" %anna%)

While simple expressions (see above) can be combined using the || and & & operators, this is not possible with
the other restrictions. So this I Criteria:

.Add(Restrictions. O (
Restrictions. & ("Age", 5)
Restrictions. I n("Nanme", new string[] { "Max", "Paddy" })))

Would have to be written as:

. Add(Restrictions. O(
Restrictions. Where<Cat>(c => c. Age > 5)
Restrictions. On<Cat>(c => c. Nane).Isln(new string[] { "Mx", "Paddy" })))

However, in addition to the additional restrictions factory methods, there are extension methods to allow a more
concise inline syntax for some of the operators. So this:

. WhereRestrictionOn(c => c. Nane). | sLi ke(" %nna%)

May also be written as:

.Where(c => c..Nane. | sLi ke("%nna%))

16.4. Associations

QueryOver can navigate association paths using JoinQueryOver() (analogous to |Criteria.CreateCriteria() to
create sub-criteria).

The factory method QuerOver<T>() on ISession returns an |QueryOver<T>. More accurately, it returns an
[QueryOver<T,T> (which inherits from |QueryOver<T>).

An [QueryOver has two types of interest; the root type (the type of entity that the query returns), and the type of
the 'current’ entity being queried. For example, the following query uses a join to create a sub-QueryOver
(analogous to creating sub-criteriain the [Criteria API):

| QueryQOver<Cat, Kitten> cat Query =
sessi on. Quer yOver <Cat >()
.Joi nQueryOver(c => c.Kittens)
.Where(k => k. Narme == "Tiddl es");

NHibernate 5.1 139

QueryOver Queries

The JoinQueryOver returns a new instance of the IQueryOver than has its root at the Kittens collection. The de-
fault type for restrictions is now Kitten (restricting on the name 'Tiddles' in the above example), while calling
.List() will return an IList<Cat>. The type |QueryOver<Cat,Kitten> inherits from |QueryOver<Cat>.

Note, the overload for JoinQueryOver takes an |Enumerable<T>, and the C# compiler infers the type from that.
If your collection typeis not IEnumerable<T>, then you need to qualify the type of the sub-criteria:

| QueryQver<Cat, Kitten> cat Query =
sessi on. Quer yOver <Cat >()
. Joi nQueryQOver<Kitten>(c => c.Kittens)
. Wiere(k => k. Nane == "Tiddl es");

The default join is an inner-join. Each of the additional join types can be specified using the methods . I nner,
.Left, .Right, or.Full.Forexample, toleft outer-join on Kittens use:

| QueryCQver<Cat, Kitten> cat Query =
sessi on. Quer yOver <Cat >()
. Left. Joi nQueryCQver(c => c.Kittens)
.Where(k => k. Nanme == "Tiddl es");

16.5. Join entities without association (Entity joins or ad hoc
joins)

In QueryOver you have the ability to define a join to any entity, not just through a mapped association. To
achieveit, use Joi nEnti t yAl i as and Joi nEnti t yQuer yOver . By example:

Cat cat = null;
Cat joinedCat = null;

var uni quel yNanedCats = sess. QueryOver<Cat>(() => cat)
.Joi nEntityAlias(
() => joinedCat,
() => cat.Nane == joinedCat.Nane && cat.|ld != joinedCat.ld,
Joi nType. Lef t Qut er Joi n)
.Where(() => joinedCat.ld == null)
.List();

16.6. Aliases

In the traditional ICriteriainterface aliases are assigned using 'magic strings, however their value does not cor-
respond to a name in the object domain. For example, when an adias is assigned using
.CreateAlias("Kitten", "kittenAlias"), thestring "kittenAlias" does not correspond to a property or class
in the domain.

In QueryOver, aliases are assigned using an empty variable. The variable can be declared anywhere (but should
be nul I at runtime). The compiler can then check the syntax against the variable is used correctly, but at
runtime the variableis not evaluated (it's just used as a placeholder for the alias).

Each Lambda Expression function in QueryOver has a corresponding overload to alow use of aliases, and a
JoinAlias function to traverse associations using aliases without creating a sub-QueryOver.

Cat catAlias = null;
Kitten kittenAlias = null;

NHibernate 5.1 140

QueryOver Queries

| QueryQOver <Cat, Cat > cat Query =
sessi on. QueryOver<Cat>(() => catAlias)
.JoinAlias(() => catAlias.Kittens, () => kittenAlias)
.Were(() => catAlias. Age > 5)
.And(() => kittenAlias.Name == "Tiddl es");

16.7. Projections

Simple projections of the properties of the root type can be added using the . Sel ect method which can take
multiple Lambda Expression arguments:

var selection =
sessi on. Quer yOver <Cat >()
. Sel ect (
c => c. Nane,
c => c. Age)
. Li st<object[]>();

Because this query no longer returns a Cat, the return type must be explicitly specified. If a single property is
projected, the return type can be specified using:

I Li st<int> ages =
sessi on. Quer yOver <Cat >()
. Sel ect(c => c. Age)
.List<int>();

However, if multiple properties are projected, then the returned list will contain object arrays, as per a projec-
tion in ICriteria. This could be fed into an anonymous type using:

var catDetails =
sessi on. Quer yOver <Cat >()

. Sel ect (
¢ => c. Nane,
c => c. Age)

. Li st<obj ect[]>()

. Sel ect (properties => new {
Cat Nane = (string)properties[0],
Cat Age = (int)properties[1],
1)

Consol e. WiteLine(catDetail s[0].CatNane);
Consol e. Wi telLi ne(catDetail s[0]. Cat Age) ;

Note that the second . sel ect call in this example is an extension method on |Enumerable<T> supplied in Sys-
tem.Ling; it is not part of NHibernate.

QueryOver allows arbitrary IProjection to be added (allowing private properties to be projected). The Projec-
tions factory class also has overloadsto alow Lambda Expressions to be used:

var selection =
sessi on. Quer yOver <Cat >()
. Sel ect (Proj ections. ProjectionList()
. Add(Proj ections. Property<Cat>(c => c. Nane))
. Add(Proj ecti ons. Avg<Cat >(c => c. Age)))
. Li st<object[]>();

NHibernate 5.1 141

QueryOver Queries

In addition there is an inline syntax for creating projection lists that does not require the explicit class qualifica-
tion:

var selection =
sessi on. Quer yOver <Cat >()
.SelectList(list =>list
. Sel ect (c => c. Nane)
. Sel ect Avg(c => c. Age))
. Li st<object[]>();

Projections can also have arbitrary aliases assigned to them to allow result transformation. If there is a CatSum-
mary DTO class defined as:

public class Cat Summary

{
public string Nane { get; set; }
public int AverageAge { get; set; }

... then aliased projections can be used with the AliasToBean<T> transformer:

Cat Sunmary summarybto = nul | ;
| Li st <Cat Sunmmar y> cat Report =
sessi on. Quer yOver <Cat >()
.SelectList(list => list
.Sel ect Goup(c => c. Name) . WthAlias(() => summaryDt o. Nane)
. Sel ect Avg(c => c. Age). WthAlias(() => summaryDt o. Aver ageAge))
. Transf or msi ng(Tr ansf or ner s. Al i asToBean<Cat Summar y>())
. Li st <Cat Summary>();

16.8. Projection Functions

In addition to projecting properties, there are extension methods to alow certain common dialect-registered
functions to be applied. For example you can write the following to get 3 letters named people.

.Where(p => p.FirstNane. StrLength() == 3)

The functions can a so be used inside projections:

. Sel ect (
p => Projections. Concat (p. Last Name, ", ", p.FirstNane),
p => p. Hei ght. Abs())

16.9. Entities Projection

Y ou can add entity projectionsviathe Asentity() extension.

Cat mate = null;

var cat AndMVat eNaneLi st = sess. QueryQOver <Cat >()
.JoinAlias(c => c.Mate, () => mate)
.Select(c => c.AsEntity(), ¢ => mate. Nane)
. Li st<object[]>();

Or it can be done via the Proj ecti ons. Root Entity and Proj ecti ons. Entity methods if more control over

NHibernate 5.1 142

QueryOver Queries

loaded entitiesis required. For instance, entity projections can be lazy loaded or fetched with lazy properties:

. Sel ect (
Projections.Entity(() => aliasl). SetlLazy(true),
Projections.Entity(() => alias2). SetFetchLazyProperties(true),
Proj ections. RootEntity()

)

16.10. Sub-queries

The Sub-queries factory class has overloads to allow Lambda Expressions to express sub-query restrictions. For
example:

Quer yOver <Cat > maxi mumAge =
QueryQver. OF <Cat >()
.SelectList(p => p. Sel ect Max(c => c. Age));

I Li st<Cat> ol destCats =
sessi on. Quer yOver <Cat >()
. Wher e(Subquer i es. Wher ePropert y<Cat >(c => c. Age) . Eq(maxi mnumAge))
.List();

Theinline syntax allows you to use sub-queries without re-qualifying the type:

I Li st<Cat> ol destCats =
sessi on. Quer yOver <Cat >()
. Wt hSubquery. WhereProperty(c => c. Age) . Eq(maxi numAge)
.List();

There is an extension method As() on (a detached) QueryOver that allows you to cast it to any type. Thisis
used in conjunction with the overloads Were(), WhereAl | (), and Wer eSone() to alow use of the built-in C#
operators for comparison, so the above query can be written as:

I Li st<Cat> ol destCats =
sessi on. Quer yOver <Cat >()
.WthSubquery. Were(c => c. Age == maxi numAge. As<i nt >())
.List();

NHibernate 5.1 143

Chapter 17. Ling Queries

NHibernate 3.0 introduces the Ling to NHibernate provider, which allows the use of the Ling API for querying
with NHibernate.

| Quer yabl e queries are obtained with the Query methods used on the | Sessi on or | St at el essSessi on. (Prior
to NHibernate 5.0, these methods were extensions defined in the NHi ber nat e. Li ng namespace.) A humber of
NHibernate Ling extensions giving access to NHibernate specific features are defined in the NHi ber nat e. Li nqg
namespace. Of course, the Ling namespace is still needed too.

usi ng System Li ngq;
usi ng NHi ber nat e. Li nq;

Note: NHibernate has another querying APl which uses lambda, QueryOver. It should not be confused with a
Ling provider.

17.1. Structure of a Query

Queries are created from an | Session using the syntax:

I Li st<Cat> cats =
sessi on. Quer y<Cat >()
.Where(c => c.Color == "white")
. ToList();

The Query<TEnti ty> function yields an | Quer yabl e<TEnti t y>, with which Ling extension methods or Ling
syntax can be used. When executed, the | Quer yabl e<TEnt i t y> will be translated to a SQL query on the data-
base.

It is possible to query a specific sub-class while still using a queryable of the base class.

I List<Cat> cats =
sessi on. Quer y<Cat >(" Eg. Donesti cCat, Eg")
.Where(c => c. Namre == "Max")
. ToList();

Starting with NHibernate 5.0, queries can also be created from an entity collection, with the standard Ling ex-
tension AsQuer yabl e available from Syst em Li ng namespace.

I List<Cat> whiteKittens =
cat.Kittens. AsQueryabl e()
.Where(k => k.Color == "white")
. ToList();

Thiswill be executed as a query on that cat 's kittens without loading the entire collection.
If the collection isamap, call AsQuer yabl e On itsVal ues property.

I List<Cat> whiteKittens =
cat. Kittens. Val ues. AsQueryabl e()
.Wiere(k => k. Color == "white")
. ToList();

NHibernate 5.1 144

Ling Queries

A client timeout for the query can be defined. As most others NHibernate specific features for Ling, this is
available through an extension defined in NHi ber nat e. Li ng hamespace.

| Li st<Cat> cats =
sessi on. Quer y<Cat >()
.Where(c => c. Col or == "bl ack")
/1 Allows 10 seconds only.
. Set Options(o => o. Set Ti neout (10))
. ToList();

17.2. Parameter types

Query parameters get extracted from the Ling expression. Their types are selected according to NHibernate
types default for .Net types.

The MappedAs extension method allows to override the default type.

I Li st<Cat> cats =
sessi on. Quer y<Cat >()
.Where(c => c.BirthDate == Dat eTi ne. Today. MappedAs(NHi bernateltil . Date))
. ToList();

I Li st<Cat> cats =
sessi on. Query<Cat >()
.Where(c => c. Name == "Max". MappedAs(TypeFact ory. Basi c("Ansi String(200)")))
. ToList();

17.3. Supported methods and members

Many methods and members of common .Net types are supported by the Ling to NHibernate provider. They
will be translated to the appropriate SQL, provided they are called on an entity property (or expression deriving
from) or at least one of their arguments references an entity property. (Otherwise, their return values will be
evaluated with .Net runtime before query execution.)

17.3.1. Common methods

The .Net 4 conpar eTo method of strings and numerical types is trandated to a case statement yielding - 1| 0] 1
according to the result of the comparison.

Many type conversions are available. For all of them, .Net overloads with more than one argument are not sup-
ported.

Numerical types can be converted to other numerical types or parsed from strings, using following methods:

* Convert. ToDeci mal
* Convert. ToDoubl e

* Convert.Tolnt32

NHibernate 5.1 145

Ling Queries

* Decinal.Parse
* Doubl e. Parse
* | nt32. Parse

Strings can be converted to Bool ean and Dat eTi me With Convert. ToBool ean Or Bool ean. Parse and Con-
vert. ToDat eTi me OF Dat eTi me. Par se respectively.

On all types supporting string conversion, ToSt ri ng method can be called.

I List<string> catBirthDates =
sessi on. Query<Cat >()
.Select(c => c.BirthDate. ToString())
. ToLi st ();

Equal s methods taking a single argument with the same type can be used. Of course, == is supported too.

17.3.2. DateTi me and Dat eTi neCf f set

Date and time parts properties can be called on Dat eTi e and Dat eTi meCf f set . Those properties are:

e Date

e Day

* Hour

e Mnute
e Mnth
¢ Second
* Year

17.3.3. 1 Col | ection, nON generic and generic

Collections cont ai ns methods are supported.

I Li st<Cat> catsWthWongKitten =
sessi on. Quer y<Cat >()
.Where(c => c.Kittens. Contains(c))
. ToList();

17.3.4. 1 Di ctionary, NnON generic and generic

Dictionaries | t emgetter are supported. This enables referencing adictionary item value in awher e condition, as
it can be done with HQL expressions.

Non generic dictionary method Cont ai ns and generic dictionary method Cont ai nskey are translated to corres-
ponding i ndi ces HQL expressions. Supposing Act s in following HQL example is generic,

NHibernate 5.1 146

Ling Queries

from Eg. Show show where 'fizard' in indices(show Acts)

it could be written with Ling:

I Li st <Show> shows =
sessi on. Quer y<Show>()
.Were(s => s. Acts. Contai nsKey("fizard"))
. ToList();

17.3.5. Mathematical functions

The following list of mathematical functions from Syst em Mat h is handled:

e Trigonometric functions: Acos, Asi n, At an, At an2, Cos, Cosh, Si n, Si nh, Tan, Tanh
* Abs (al overloads)

e Ceiling (both overloads)

e Floor (both overloads)

* Pow

¢ Round (only overloads without a mode argument)

e Sign (al overloads)

e Sgrt

e Truncat e (both overloads)

17.3.6. Nullables

On Nul | abl e<> types, Get Val ueOr Def aul t methods, with or without a provided default value, are supported.

17.3.7. Strings

The following properties and methods are supported on strings:

e Contains

e EndsW t h (without additional parameters)

e I ndex (only overloads taking a character or a string, and optionally a start index)
* Length

* Repl ace (both overloads)

e StartsWth (without additional parameters)

e Substring (both overloads)

NHibernate 5.1 147

Ling Queries

e ToLower (without additional parameters) and ToLower I nvari ant , both trandlated to the same database lower
function.

e ToUpper (without additional parameters) and ToUpper I nvari ant , both trandated to the same database upper
function.

e Tri m(both overloads)
* TrinkEnd

e TrinStart

Furthermore, a string Li ke extension methods allows expressing SQL | i ke conditions.

I Li st <DonesticCat> cats =
sessi on. Quer y<Donest i cCat >()
.Were(c => c. Nane. Li ke("L% % "))
. ToList();

This Li ke extension method is a Ling to NHibernate method only. Trying to call it in another context is not
supported.

If you want to avoid depending on the NHi ber nat e. Li ng hamespace, you can define your own replica of the
Li ke methods. Any 2 or 3 arguments method named Li ke in a class named Sql Met hods will be trans ated.

17.4. Future results

Future results are supported by the Ling provider. They are not evaluated till one gets executed. At that point,
all defined future results are evaluated in one single round-trip to database.

/1 Define queries
| Fut ur eEnuner abl e<Cat > cats =
sessi on. Quer y<Cat >()
.\Were(c => c.Col or == "bl ack")
. ToFuture();
| Fut ur eVal ue<i nt > cat Count =
sessi on. Quer y<Cat >()
. ToFut ureVal ue(q => q. Count ());
/| Execute them
foreach(Cat cat in cats. Get Enunerable())

{
/1 Do sonething
}
i f (catCount.Value > 10)
{
/1 Do sonet hi ng
}

In above example, accessing cat Count . Val ue does not trigger a round-trip to database: it has been evaluated
with cat s. Get Enuner abl e() call. If instead cat Count . Val ue was accessed first, it would have executed both
future and cat s. Get Enurrer abl e() would have not trigger a round-trip to database.

17.5. Fetching associations

NHibernate 5.1 148

Ling Queries

A Ling query may load associated entities or collection of entities. Once the query is defined, using Fet ch al-
lows fetching a related entity, and Fet chivany alows fetching a collection. These methods are defined as exten-
Sionsin NHi ber nat e. Li ng namespace.

| Li st<Cat> ol dCats =
sessi on. Quer y<Cat >()
.Were(c => c.BirthDate. Year < 2010)
.Fetch(c => c. Mate)
. FetchMany(c => c. Kittens)
. ToList();

Issuing many Fet chvany on the same query may cause a cartesian product over the fetched collections. This
can be avoided by splitting the fetches among future queries.

| Quer yabl e<Cat > ol dCat sQuery =
sessi on. Quer y<Cat >()
.Where(c => c.BirthDate. Year < 2010);
ol dCat sQuery
.Fetch(c => c. Mate)
. FetchMany(c => c. Ki ttens)
. ToFuture();
I Li st<Cat> ol dCats =
ol dCat sQuery
. FetchMany(c => c. Anot her Col | ecti on)
. ToFuture()
. Get Enuner abl e()
. ToList();

Use ThenFet ch and ThenFet chMany for fetching associations of the previously fetched association.

I Li st<Cat> ol dCats =
sessi on. Quer y<Cat >()
.Where(c => c.BirthDate. Year < 2010)
.Fetch(c => c. Mate)
. FetchMany(c => c.Kittens)
. ThenFetch(k => k. Mate)
. ToList();

17.6. Modifying entities inside the database

Beginning with NHibernate 5.0, Ling queries can be used for inserting, updating or deleting entities. The query
defines the data to delete, update or insert, and then Del et e, Updat e, Updat eBui | der, I nsertInto and I nsert -
Bui | der queryable extension methods allow to delete it, or instruct in which way it should be updated or inser-
ted. Those queries happen entirely inside the database, without extracting corresponding entities out of the data-
base.

These operations are a Ling implementation of Section 13.3, “DML-style operations’, with the same abilities

and limitations.

17.6.1. Inserting new entities

Insertinto and | nsertBuil der method extensions expect a NHibernate queryable defining the data source of
the insert. This data can be entities or a projection. Then they allow specifying the target entity type to insert,
and how to convert source data to those target entities. Three forms of target specification exist.

NHibernate 5.1 149

Ling Queries

Using projection to target entity:

sessi on. Quer y<Cat >()
.Where(c => c.BodyWei ght > 20)
.Insertinto(c => new Dog { Nane = c.Nanme + "dog", BodyWi ght = c.BodyWight });

Projections can be done with an anonymous object too, but it requires supplying explicitly the target type,
which in turn requires re-specifying the source type:

sessi on. Quer y<Cat >()
.Where(c => c. BodyWei ght > 20)
.Insertlnto<Cat, Dog>(c => new { Nane = c. Nane + "dog", BodyWei ght = c.BodyWight });

Or using assignments;

sessi on. Quer y<Cat >()
.Where(c => c.BodyWei ght > 20)
. I nsertBuil der ()
. I nt o<Dog>()
.Value(d => d. Nanme, ¢ => c. Nane + "dog")
. Val ue(d => d. BodyWei ght, ¢ => c. BodyWi ght)
.Insert();

In al cases, unspecified properties are not included in the resulting SQL insert. versi on and ti mest anp proper-
ties are exceptions. If not specified, they are inserted with their seed value.

For more information on | nsert limitations, please refer to Section 13.3, “DML-style operations”.

17.6.2. Updating entities

Updat e and Updat eBui | der method extensions expect a NHibernate queryable defining the entities to update.
Then they allow specifying which properties should be updated with which values. Asfor insertion, three forms
of target specification exist.

Using projection to updated entity:

sessi on. Quer y<Cat >()
.Where(c => c.BodyWei ght > 20)
.Update(c => new Cat { BodyWight = c.BodyWight / 2 });

Projections can be done with an anonymous object too:

sessi on. Query<Cat >()
.Where(c => c. BodyWei ght > 20)
. Updat e(c => new { BodyWei ght = c.BodyWight / 2 });

Or using assignments:

sessi on. Quer y<Cat >()
.Wiere(c => c. BodyWei ght > 20)
. Updat eBui | der ()
.Set(c => c.BodyWi ght, ¢ => c. BodyWight / 2)
. Updat e();

In all cases, unspecified properties are not included in the resulting SQL update. This could be changed for
versi on andti mest anp properties. using Updat eVer si oned instead of Updat e alows incrementing the version.
Custom version types (NH ber nat e. User t ype. | User Ver si onType) are not supported.

NHibernate 5.1 150

Ling Queries

When using projection to updated entity, please note that the constructed entity must have the exact same type
than the underlying queryable source type. Attempting to project to any other class (anonymous projections ex-
cepted) will fail.

17.6.3. Deleting entities

Del et e method extension expects a queryable defining the entities to delete. It immediately deletes them.

sessi on. Quer y<Cat >()
.Where(c => c. BodyWei ght > 20)
.Delete();

17.7. Query cache

The Ling provider can use the query cache if it is setup. Refer to Section 20.4, “The Query Cache” for more de-
tails on how to set it up.

Set Opt i ons extension method allows to enable the cache for the query.

I Li st<Cat> ol dCats =
sessi on. Quer y<Cat >()
.\Were(c => c.BirthDate. Year < 2010)
. Set Options(o => 0. Set Cacheabl e(true))
. ToLi st ();

The cache mode and cache region can be specified too.

I Li st<Cat> cats =
sessi on. Quer y<Cat >()
.Where(c => c. Name == "Max")
.SetOptions(o => o
. Set Cacheabl e(true)
. Set CacheRegi on(" cat Nanmes")
. Set CacheMbde(CacheMbde. Put))
. ToList();

17.8. Extending the Ling to NHibernate provider

The Ling to NHibernate provider can be extended for supporting additional SQL functions or translating addi-
tional methods or propertiesto a SQL query.

17.8.1. Adding SQL functions

NHibernate Ling provider feature aLi nqExt ensi onMet hod attribute. It allows using an arbitrary, built-in or user
defined, SQL function. It should be applied on a method having the same arguments than the SQL function.

public static class CustonlLi ngExt ensi ons

{
[Li ngExt ensi onMet hod()]

public static string Checksun(this double input)

NHibernate 5.1 151

Ling Queries

{
/1 No need to inplenment it in .Net, unless you wish to call it
/'l outside | Queryabl e context too.
t hr ow new Not | npl ement edException("This call should be translated " +
"to SQ and run db side, but it has been run with .Net runtine");
}

Then it can be used in aLing to NHibernate query.

var rnd = (new Randont()) . Next Doubl e();
I Li st<Cat> cats =
sessi on. Quer y<Cat >()
/1 Pseudo random order
.OrderBy(c => (c.ld * rnd). Checksum())
. ToList();

The function name is inferred from the method name. If needed, another name can be provided.

public static class CustonLi ngExtensi ons

{
[Li ngEXt ensi onMet hod(" dbo. aCust onFuncti on™)]
public static string ACustonfFunction(this string input, string otherlnput)
{
t hrow new Not | npl enent edExcepti on();
}
}

Since NHibernate v5.0, the Ling provider will no more evaluate in-memory the method call even when it does
not depend on the queried data. If you wish to have the method call evaluated before querying whenever pos-
sible, and then replaced in the query by its resulting value, specify LingExtensionPreEval u-
ation. Al | owPr eEval uat i on on the attribute.

public static class CustonLi ngExtensi ons

{
[Li ngExt ensi onMet hod(" dbo. aCust onfuncti on",
Li nqExt ensi onPr eEval uati on. Al | owPr eEval uati on)]
public static string ACustonfunction(this string input, string otherlnput)
{
/1 In-menory eval uation inplenmentation.
return input.Replace(otherlnput, "blah");
}
}

17.8.2. Adding a custom generator

Generators are responsible for transdating .Net method calls found in lambdas to the proper HQL constructs.
Adding support for a new method call can be achieved by registering an additional generator in the Ling to
NHibernate provider.

If the purpose of the added method is to simply call some SQL function, using Section 17.8.1, “Adding SQL
functions” will be easier.

As an example, here is how to add support for an Asnul | abl e method which would alow to call aggregates
which may yield nul | without to explicitly cast to the nullable type of the aggregate.

public static class Nullabl eExtensi ons

{
public static T? AsNul | abl e<T>(this T value) where T : struct

NHibernate 5.1 152

Ling Queries

{
/1 Allow runtinme use.
/1 Not useful for |ing-to-nhibernate, could be:
/1 throw Not SupportedException();
return val ue;
}

Adding support in Ling to NHibernate for a custom method requires a generator. For this AsNul | abl e method,
we need a method generator, declaring statically its supported method.

public class AsNul | abl eGenerator : BaseHql Gener at or For Met hod

{
publ i c AsNul | abl eGener at or ()

{
Suppor t edMet hods = new |

Ref | ect Hel per. Get Met hodDefinition(() => Nul |l abl eExt ensi ons. AsNul | abl e(0))
iE
}

public override Hgl TreeNode Bui | dHgl (Met hodl nf o net hod,
Expr essi on t arget Obj ect,
ReadOnl yCol | ect i on<Expr essi on> ar gunent s,
Hqgl Tr eeBui | der treeBuil der,
| Hgl Expressi onVisitor visitor)

/1 This has just to transmit the argunment "as is", HQL does not need
/1 a specific call for null conversion.
return visitor.Visit(argunments[O0]).AsExpression();

There are property generators too, and the supported methods or properties can be dynamically declared. Check
NHibernate NHi ber nat e. Li ng. Funct i ons hamespace classes's sources for more examples. Conpar eGener at or
and Dat eTi mePr oper t i esHgl Gener at or are examples of those other cases.

For adding AsNul | abl eGener at or in Ling to NHibernate provider, a new generators registry should be used.
Derive from the default one and merge it. (Here we have a static declaration of method support case.)

public class ExtendedLi ngToHql Gener at or sRegi stry :
Def aul t Li nqToHgl Gener at or sRegi stry

{
publ i ¢ Ext endedLi nqToHqgl Gener at or sRegi stry()
base()
{
t hi s. Merge(new AsNul | abl eGenerator());
}
}

In the case of dynamic declaration of method support, another cal is required instead of the merge: Re-
gi st er Gener at or . Conpar eGener at or illustratesthis.

The last step isto instruct NHibernate to use this extended registry. It can be achieved through xml configura-
tion under sessi on- f act ory hode, or by code before building the session factory. Use one of them.

<property nanme="linqtohql . generatorsregistry">
Your NameSpace. Ext endedLi nqToHql Gener at or sRegi stry, Your Assenbl yNane
</ property>

usi ng NHi ber nate. Cf g;
I

NHibernate 5.1 153

Ling Queries

var cfg = new Configuration();
cf g. Li ngToHqgl Gener at or sRegi st r y<Ext endedLi nqToHql Gener at or sRegi stry>();
/1 And build the session factory with this configuration.

Now the following query could be executed, without failing if no Max cat exists.

var ol dest MaxBirthDate =
sessi on. Quer y<Cat >()

.Wiere(c => c. Nane == "Max")
.Select(c => c.BirthDate. AsNul | abl e())
-Mn();

(Of course, the same result could be obtained with (Dat eTi me?) (c. Bi rt hDate) .)

By default, the Ling provider will try to evaluate the method call with .Net runtime whenever possible, instead
of trandlating it to SQL. It will not do it if at least one of the parameters of the method call has its value origin-
ating from an entity, or if the method is marked with the NoPr eEval uat i on attribute (available since NHibern-
ate 5.0).

NHibernate 5.1 154

Chapter 18. Native SQL

You may also express queries in the native SQL dialect of your database. This is useful if you want to utilize
database specific features such as query hints or the coNNECT keyword in Oracle. It also provides a clean migra-
tion path from a direct SQL/ADO.NET based application to NHibernate.

NHibernate allows you to specify handwritten SQL (including stored procedures) for al create, update, delete,
and load operations.

18.1. Using an | SQLQuery

Execution of native SQL queriesis controlled viathe | sQ.Query interface, which is obtained by calling I Ses-
si on. Cr eat eSQLQuer y() . The following describes how to use this API for querying.

18.1.1. Scalar queries

The most basic SQL query isto get alist of scalars (values).

sess. Creat eSQLQuer y(" SELECT * FROM CATS")
. AddScal ar ("1 D', NHi bernateUtil.Int64)
. AddScal ar ("NAME", NHi bernateltil. String)
. AddScal ar (" Bl RTHDATE", NHi bernateUtil . Date)

This query specified:

e the SQL query string
e the columns and typesto return

Thiswill return an | Li st of Gbj ect arrays (obj ect[]) with scalar values for each column in the CATS table.
Only these three columns will be returned, even though the query is using * and could return more than the
three listed columns.

18.1.2. Entity queries

The above query was about returning scalar values, basically returning the "raw" values from the result set. The
following shows how to get entity objects from a native SQL query viaAddEntity().

sess. Creat eSQLQuer y(" SELECT * FROM CATS"). AddEntity(typeof (Cat));
sess. Creat eSQLQuery(" SELECT | D, NAVE, Bl RTHDATE FROM CATS"). AddEntity(typeof (Cat));

This query specified:

« the SQL query string
« theentity returned by the query

Assuming that Cat is mapped as a class with the columns ID, NAME and BIRTHDATE the above queries will
both return an IList where each element is a Cat entity.

If the entity is mapped with a many- t o- one to another entity it is required to also return its identifier when per-

NHibernate 5.1 155

Native SQL

forming the native query, otherwise a database specific "column not found" error will occur. The additional
columns will automatically be returned when using the * notation, but we prefer to be explicit as in the follow-
ing example for amany- t o- one t0 a Dog:

sess. Creat eSQLQuery("SELECT I D, NAME, Bl RTHDATE, DOG | D FROM CATS")
. AddEntity(typeof(Cat));

Thiswill alow cat.Dog property access to function properly.

18.1.3. Handling associations and collections

It is possible to eagerly join in the Dog to avoid the possible extra round-trip for initializing the proxy. Thisis
done viathe AddJoi n() method, which allows you to join in an association or collection.

sess
. Creat eSQ_Quer y(
"SELECT cat.| D, NAME, BIRTHDATE, DOG ID, D ID, D_
"FROM CATS cat, DOGS d WHERE cat. DOG ID = d.D I D'
.AddEntity("cat", typeof(Cat))
. AddJoi n("cat . Dog");

NAME " +
)

In this example the returned cat 's will have their bog property fully initialized without any extra round-trip to
the database. Notice that we added a alias name ("cat") to be able to specify the target property path of the join.
It is possible to do the same eager joining for collections, e.g. if the cat had a one-to-many to Dog instead.

Sess

. Creat eSQLQuer y(
"SELECT |1 D, NAME, BIRTHDATE, D ID, D _NAME, CAT_ID " +

"FROM CATS cat, DOGS d WHERE cat.|D = d. CAT_I D")
.AddEntity("cat", typeof(Cat))
. AddJoi n("cat . Dogs");

At this stage we are reaching the limits of what is possible with native queries without starting to enhance the
SQL queries to make them usable in NHibernate; the problems start to arise when returning multiple entities of
the same type or when the default aias/column names are not enough.

18.1.4. Returning multiple entities

Until now the result set column names are assumed to be the same as the column names specified in the map-
ping document. This can be problematic for SQL queries which join multiple tables, since the same column
names may appear in more than one table.

Column aliasinjection is needed in the following query (which most likely will fail):

Sess

. Creat eSQLQuer y(
"SELECT cat.*, nother.* " +

"FROM CATS cat, CATS nother WHERE cat. MOTHER I D = not her.|1D")
.AddEntity("cat", typeof(Cat))
. AddEntity("mother", typeof(Cat))

The intention for this query isto return two Cat instances per row, acat and its mother. Thiswill fail since there
is a conflict of names since they are mapped to the same column names and on some databases the returned
column aliases will most likely be on the form "c.ID", "c.NAME", etc. which are not equal to the columns spe-
cified in the mappings ("ID" and "NAME").

The following form is not vulnerable to column name duplication:

NHibernate 5.1 156

Native SQL

Sess

. Creat eSQLQuer y(

"SELECT {cat.*}, {nother.*} " +

"FROM CATS cat, CATS nother WHERE cat. MOTHER I D = not her.|D")
.AddEntity("cat", typeof(Cat))
.AddEntity("nmother", typeof(Cat))

This query specified:

» the SQL query string, with placeholders for NHibernate to inject column aliases
« theentities returned by the query

The {cat.*} and { mother.*} notation used above is a shorthand for "all properties’. Alternatively, you may list
the columns explicitly, but even in this case we let NHibernate inject the SQL column aliases for each property.
The placeholder for a column alias is just the property name qualified by the table dias. In the following ex-
ample, we retrieve Cats and their mothers from a different table (cat_log) to the one declared in the mapping
metadata. Notice that we may even use the property aliasesin the where clause if welike.

String sql = "SELECT c.ID as {c.l1d}, c.NAME as {c. Nane}, " +
"c. BI RTHDATE as {c.BirthDate}, c. MOTHER ID as {c. Mother}, {rmother.*} " +
"FROM CAT_LOG ¢, CAT_LOG m WHERE {c. Mother} = mID";

var | oggedCats = sess. CreateSQ.Query(sql)

.AddEntity("c", typeof(Cat))
.AddEntity("n', typeof(Cat)).List<object[]>();

18.1.4.1. Alias and property references

For most cases the above alias injection is needed, but for queries relating to more complex mappings like com-
posite properties, inheritance discriminators, collections etc. there are some specific aliases to use to alow
NHibernate to inject the proper aliases.

The following table shows the different possibilities of using the alias injection. Note: the alias names in the
result are examples, each alias will have a unique and probably different name when used.

Table 18.1. Aliasinjection names

Description Syntax Example
A simple property {[aliasname].[prope A NAME as {item Nane}
rtynane] }

A composite property {[al i asnane].[conpo CURRENCY as {item Amount.Currency}, VALUE as

nent - {item Anount . Val ue}
nane] . [propertyname
1}
Discriminator of an {[aliasname].class} DI SC as {itemclass}
entity
All properties of an {[aliasnane].*} {item *}
entity
A collection key {[al i asname] . key} ORG D as {col | . key}
Theid of ancollection {[aliasnane].id} EMPI D as {coll.id}

NHibernate 5.1 157

Native SQL

Description Syntax Example

The element of an col- {[aliasnane].elenen XID as {coll.elenent}
lection t}

property of the ele- {[aliasnane].el emen NAME as {col | .el enent. Nane}
ment in the collection | t.[propertynane]}

All properties of the {[aliasnane].elenmen {coll.elenment.*}
element in the collec- t.*}
tion

All properties of the {[aliasname].*} {col | .*}
collection

18.1.5. Returning non-managed entities

It ispossible to apply an | Resul t Transf or mer to native sgl queries. Allowing it to e.g. return non-managed en-
tities.

sess. Creat eSQLQuer y(" SELECT NAME, BI RTHDATE FROM CATS")
. Set Resul t Tr ansf or ner (Transf or mers. Al i asToBean(t ypeof (Cat DTO)))

This query specified:

» the SQL query string
e aresult transformer

The above query will return alist of cat bTOwhich has been instantiated and injected the values of NAME and
BIRTHNAME into its corresponding properties or fields.

IMPORTANT: The custom I Resul t Transf or ner should override Equal s and Get HashCode, otherwise the
query translation won't be cached. This also will result in memory leak.

18.1.6. Handling inheritance

Native SQL queries which query for entities that are mapped as part of an inheritance hierarchy must include
all propertiesfor the base class and al its subclasses.

18.1.7. Parameters

Native SQL queries support positional as well as named parameters.

var query = sess
. Creat eSQLQuer y(" SELECT * FROM CATS WHERE NAME |ike ?")
. AddEntity(typeof(Cat));

var pusList = query.SetString(0, "Pus%).List<Cat>();

guery = sess
.createSQ.Query("SELECT * FROM CATS WHERE NAME |i ke :nane")
. AddEntity(typeof(Cat));

var pusList = query. SetString("name", "Pus%).List<Cat>();

NHibernate 5.1 158

Native SQL

18.2. Named SQL queries

Named SQL queries may be defined in the mapping document and called in exactly the same way as a named
HQL query. In this case, we do not need to call AddEntity().

<sqgl - query name="persons" >
<return alias="person" class="eg.Person"/>
SELECT person. NAME AS { person. Nane},
person. AGE AS { person. Age},
person. SEX AS { person. Sex}
FROM PERSON per son
WHERE per son. NAMVE LI KE : namePattern
</ sql - query>

var peopl e = sess. Get NanedQuer y(" persons")
.SetString("nanePattern", nanePattern)
. Set MaxResul t s(50)
. Li st <Person>();

The <ret urn-j oi n> and <l oad- col | ecti on> elements are used to join associations and define queries which
initialize collections, respectively.

<sql - query name="personsWth">
<return alias="person" class="eg.Person"/>
<return-join alias="address" property="person. Mai |l i ngAddr ess"/ >
SELECT person. NAME AS {person. Nane},
person. AGE AS {person. Age},
person. SEX AS { person. Sex},
adddr ess. STREET AS {address. Street},
adddress. CI TY AS {address.City},
adddr ess. STATE AS {address. St at e},
adddress. ZI P AS {address. Zi p}
FROM PERSON per son
JO N ADDRESS adddr ess
ON person. | D = address. PERSON | D AND addr ess. TYPE=' MAI LI NG
VWHERE per son. NAME LI KE : nanePattern
</ sql - query>

A named SQL query may return a scalar value. Y ou must declare the column alias and NHibernate type using
the <r et ur n- scal ar > element:

<sgl - query name="nmnySqgl Query" >
<return-scal ar col um="nane" type="String"/>
<return-scal ar col um="age" type="Int64"/>
SELECT p. NAME AS nane,
p. AGE AS age,
FROM PERSON p WHERE p. NAME LI KE ' Hi ber %
</ sql - query>

You can externalize the resultset mapping information in a <resul t set > element to either reuse them across
several named queries or through the Set Resul t Set Mappi ng() API.

<resul t set name="per sonAddr ess" >

<return alias="person" class="eg.Person"/>

<return-join alias="address" property="person. Mai |l i ngAddr ess"/ >
</resul tset>

<sqgl - query name="personsWth" resultset-ref="personAddress">
SELECT person. NAME AS {per son. Nane},
person. AGE AS {person. Age},
person. SEX AS { person. Sex},
adddr ess. STREET AS {address. Street},
adddress. CI TY AS {address.City},

NHibernate 5.1 159

Native SQL

adddr ess. STATE AS {address. St at e},
adddress. ZI P AS {address. Zi p}
FROM PERSON per son
JO N ADDRESS adddr ess
ON person. | D = address. PERSON | D AND addr ess. TYPE=" MAI LI NG
VWHERE person. NAME LI KE : nanmePattern
</ sql - query>

Y ou can aternatively use the resultset mapping information in your .hbm.xml files directly in code.

var cats = sess. Creat eSQLQuery(
"select {cat.*}, {kitten.*} " +
"fromcats cat, cats kitten " +
"where kitten.nmother = cat.id")
. Set Resul t Set Mappi ng("cat AndKitten")
. List<Cat>();

Like HQL named queries, SQL named queries accepts a number of attributes matching settings available on the
| SQLQuery interface.

e flush-node - override the session flush mode just for this query.

e cacheabl e - allow the query results to be cached by the second level cache. See Chapter 26, NHibern-
ate.Caches.

e cache-regi on - specify the cache region of the query.

* cache- nmode - specify the cache mode of the query.

e fetch-size - set afetch size for the underlying ADO query.

e timeout - Setthe query timeout in seconds.

* read-only -true switchesyielded entities to read-only. See Chapter 10, Read-only entities.

* coment - add a custom comment to the SQL.

18.2.1. Using return-property to explicitly specify column/alias names

With <r et urn- property> you can explicitly tell NHibernate what column aliases to use, instead of using the
{}-syntax to let NHibernate inject its own aliases.

<sgl - query name="nySqgl Query" >
<return alias="person" class="eg. Person">
<return-property name="Nanme" col um="nyNanme"/>
<return-property nane="Age" col um="nyAge"/>
<return-property nane="Sex" col um="mySex"/>
</return>
SELECT person. NAME AS nyNane,
per son. AGE AS nyAge,
per son. SEX AS nySex,
FROM PERSON person WHERE person. NAME LI KE : nane
</ sql - query>

<r et ur n- propert y> also works with multiple columns. This solves a limitation with the {} -syntax which can
not alow fine grained control of multi-column properties.

<sql - query name="or gani zati onCurr ent Enpl oynent s" >
<return alias="enp" class="Enpl oynent">
<return-property nane="Sal ary">
<return-col um nanme="VALUE"/ >
<return-col um name="CURRENCY"/ >
</return-property>
<return-property nane="EndDate" col um="nyEndDate"/>
</return>
SELECT EMPLOYEE AS {enp. Enpl oyee}, EMPLOYER AS {enp. Enpl oyer},
STARTDATE AS {enp. StartDate}, ENDDATE AS {enp. EndDat e},
REG ONCODE as {enp. Regi onCode}, EID AS {enp.1d}, VALUE, CURRENCY

NHibernate 5.1 160

Native SQL

FROM EMPLOYMENT
VWHERE EMPLOYER = :id AND ENDDATE | S NULL
ORDER BY STARTDATE ASC

</ sql - query>

Notice that in this example we used <r et ur n- pr oper t y> in combination with the { } -syntax for injection, allow-
ing users to choose how they want to refer column and properties.

If your mapping has a discriminator you must use <return-discrininator> to specify the discriminator
column.

18.2.2. Using stored procedures for querying

NHibernate introduces support for queries via stored procedures and functions. Most of the following docu-
mentation is equivalent for both. The stored procedure/function must return a resultset to be able to work with
NHibernate. An example of such a stored function in MS SQL Server 2000 and higher is as follows:

CREATE PROCEDURE sel ect Al | Enpl oynents AS
SELECT EMPLOYEE, EMPLOYER, STARTDATE, ENDDATE,
REG ONCODE, EMPI D, VALUE, CURRENCY
FROM EMPLOYMENT

To use this query in NHibernate you need to map it viaa named query.

<sqgl - query name="sel ect Al | Enpl oynents_SP" >
<return alias="enp" class="Enpl oynent">
<return-property nane="enpl oyee" col umm="EMPLOYEE"/ >
<return-property nane="enpl oyer" col um="EMPLOYER'/ >
<return-property nane="startDate" col um="STARTDATE"/ >
<return-property nane="endDate" col utm="ENDDATE"/ >
<return-property nane="regi onCode" col utm="REG ONCODE"/ >
<return-property nanme="id" colum="ElID'/>
<return-property nane="sal ary">
<return-col um nane="VALUE"/ >
<return-col um nane=" CURRENCY"/ >
</return-property>
</return>
exec sel ect Al | Enpl oynent s
</ sql - query>

Notice that stored procedures currently only return scalars and entities. <return-join> and
<l oad- col | ecti on> are not supported.

18.2.2.1. Rules/limitations for using stored procedures

To use stored procedures with NHibernate the procedures/functions have to follow some rules. If they do not
follow those rules they are not usable with NHibernate. If you still want to use these procedures you have to ex-
ecute them viasessi on. Connecti on. Therules are different for each database, since database vendors have dif-
ferent stored procedure semantics/syntax.

Stored procedure queries can't be paged with Set Fi r st Resul t () / Set MaxResul t s() .

Recommended call form is dependent on your database. For MS SQL Server use exec functionNane
<par anet er s>.

For Oracle the following rules apply:

e A function must return aresult set. The first parameter of a procedure must be an our that returns a result

NHibernate 5.1 161

Native SQL

set. Thisis done by using a SYsS_REFCURSCOR type in Oracle 9i or later. In Oracle you need to define a REF
CURSOR type, see Oracle literature.

For MS SQL server the following rules apply:

e The procedure must return aresult set. NHibernate will use DbConmand. Execut eReader () to obtain the res-
ults.

» If you can enable SET NOCOUNT ON in your procedure it will probably be more efficient, but thisis not are-
quirement.

18.3. Custom SQL for create, update and delete

NHibernate can use custom SQL statements for create, update, and delete operations. The class and collection
persisters in NHibernate already contain a set of configuration time generated strings (insertsgl, deletesqgl, up-
datesql etc.). The mapping tags<sgl -i nsert >, <sql - del et e>, and <sq| - updat e> override these strings:

<cl ass nanme="Person">
<id name="id">
<generator class="increnent"/>
</id>
<property nane="nane" not-null="true"/>
<sql -i nsert >l NSERT | NTO PERSON (NAME, | D) VALUES (UPPER(?), ?)</sql-insert>
<sql - updat e>UPDATE PERSON SET NAME=UPPER(?) WHERE | D=?</sql - updat e>
<sqgl - del et e>DELETE FROM PERSON WHERE | D=?</ sql - del et e>
</cl ass>

Note that the custom sql -i nsert will not be used if you use i dentity to generate identifier values for the
class.

The SQL is directly executed in your database, so you are free to use any diaect you like. Thiswill of course
reduce the portability of your mapping if you use database specific SQL.

Stored procedures are supported if the database-native syntax is used:

<cl ass nanme="Person" >

<id name="id">

<generator class="increnment"/>

</id>

<property name="nane" not-null="true"/>

<sqgl -i nsert>exec createPerson ?, ?</sql-insert>

<sql - del et e>exec del et ePerson ?</sql - del et e>

<sqgl - updat e>exec updat ePerson ?, ?</sql-update>
</ cl ass>

The order of the positional parameters is currently vital, as they must be in the same sequence as NHibernate
expects them.

Y ou can see the expected order by enabling debug logging for the NHi ber nat e. Persi ster. Entity level. With
this level enabled NHibernate will print out the static SQL that is used to create, update, delete etc. entities. (To
see the expected sequence, remember to not include your custom SQL in the mapping files as that will override
the NHibernate generated static sql.)

The stored procedures are by default required to affect the same number of rows as NHibernate-generated SQL
would. NHibernate uses DbCommand. Execut eNonQuer y to retrieve the number of rows affected. This check can
be disabled by using check="none" attributeinsqgl -i nsert element.

NHibernate 5.1 162

Native SQL

18.4. Custom SQL for loading

Y ou may also declare your own SQL (or HQL) queries for entity loading:

<sql - query name="person">
<return alias="pers" class="Person" | ock-nobde="upgrade"/>
SELECT NAME AS {pers. Nane}, |ID AS {pers.|d}
FROM PERSON
WHERE | D=7
FOR UPDATE
</ sql - query>

This is just a named query declaration, as discussed earlier. You may reference this named query in a class
mapping:

<cl ass nanme="Person" >
<id name="|d">
<generator class="increnment"/>

</id>
<property name="Nane" not-null="true"/>
<l oader query-ref="person"/>

</ cl ass>

This even works with stored procedures.
Y ou may even define a query for collection loading:

<set nane="Enpl oynents" inverse="true">
<key/ >
<one-to-many cl ass="Enpl oynent"/>
<l oader query-ref="enpl oynents"/>
</set>

<sql - query name="enpl oynment s" >
<l oad-col | ection alias="enmp" rol e="Person. Enpl oynents"/>
SELECT {enp. *}
FROM EMPLOYMENT enp
VWHERE EMPLOYER = :id
ORDER BY STARTDATE ASC, EMPLOYEE ASC
</ sql - query>

Y ou could even define an entity loader that |oads a collection by join fetching:

<sgl - query name="person">
<return alias="pers" class="Person"/>
<return-join alias="enp" property="pers. Enpl oynents"/>
SELECT NAME AS {pers.*}, {enp.*}
FROM PERSON pers
LEFT OQUTER JO N EMPLOYMENT enp
ON pers. | D = enp. PERSON | D
WHERE | D=?
</ sql - query>

NHibernate 5.1 163

Chapter 19. Filtering data

NHibernate provides an innovative new approach to handling data with "visibility" rules. A NHibernate filter is
aglobal, named, parameterized filter that may be enabled or disabled for a particular NHibernate session.

19.1. NHibernate filters

NHibernate adds the ahility to pre-define filter criteria and attach those filters at both a class and a collection
level. A filter criteria is the ability to define a restriction clause very similar to the existing "where" attribute
available on the class and various collection elements. Except these filter conditions can be parameterized. The
application can then make the decision at runtime whether given filters should be enabled and what their para-
meter values should be. Filters can be used like database views, but parameterized inside the application.

In order to use filters, they must first be defined and then attached to the appropriate mapping elements. To
define afilter, usethe<fil t er- def/ > element within a<hi ber nat e- mappi ng/ > element:

<filter-def name="nyFilter">
<filter-param name="nyFilterParam' type="String"/>
</filter-def>

Then, thisfilter can be attached to a class:

<cl ass nanme="Md ass" ...>
<filter name="nyFilter" condition=":nyFilterParam = MY_FI LTERED COLUWN'/ >

</ cl ass>

or, to acollection:

<set ...>
<filter nane="nyFilter" condition=":nyFilterParam = MY_FI LTERED COLUWN'/ >
</ set>

or, even to both (or multiples of each) at the sametime.

The methods on 1Session are EnableFilter(string filterNane), GetEnabledFilter(string
filterName), and Di sabl eFil ter(string filterNane). By default, filters are not enabled for a given session;
they must be explicitly enabled through use of the I Sessi on. Enabl eFi |l ter () method, which returns an in-
stance of the ! Fi | t er interface. Using the simple filter defined above, thiswould look like:

session. Enabl eFilter("nyFilter"). Set Paraneter ("nyFilterParant, "sone-value");

Note that methods on the NHi bernate. | Fil ter interface do allow the method-chaining common to much of
NHibernate.

A full example, using temporal data with an effective record date pattern:

<filter-def name="effectiveDate">
<filter-param name="asOf Date" type="date"/>
</filter-def>

<cl ass nane="Enpl oyee" ...>
<many-t o-one nane="Departnment"” col um="dept _id" cl ass="Departnent"/>

<property nane="EffectiveStartDate" type="date" colum="eff_start_dt"/>
<property nane="EffectiveEndDate" type="date" colum="eff_end_dt"/>

NHibernate 5.1 164

Filtering data

<l--
Note that this assumes non-term nal records have an eff_end_dt set to
a max db date for sinplicity-sake
-->
<filter nane="effectiveDate"
condi ti on=":asCf Date BETWEEN eff_start_dt and eff_end_dt"/>
</ cl ass>

<cl ass nane="Departnent" ...>

<set nanme="Enpl oyees" |azy="true">
<key col um="dept _id"/>
<one-to- many cl ass="Enpl oyee"/>
<filter nanme="effectiveDate"
condi ti on=":asCf Dat e BETWEEN eff_start_dt and eff_end_dt"/>
</ set>
</ cl ass>

Then, in order to ensure that you always get back currently effective records, simply enable the filter on the ses-
sion prior to retrieving employee data:

| Session session = ...;

session. Enabl eFilter("effectiveDate"). Set Paraneter("asO Date", DateTi nme. Today) ;

var results = session.CreateQuery("from Enpl oyee as e where e. Salary > :targetSalary")
.Setlnt64("target Sal ary", 1000000L)
. Li st <Enpl oyee>();

In the HQL above, even though we only explicitly mentioned a salary constraint on the results, because of the
enabled filter the query will return only currently active employees who have a salary greater than a million
dollars.

Note: if you plan on using filters with outer joining (either through HQL or load fetching) be careful of the dir-
ection of the condition expression. It's safest to set this up for left outer joining; in general, place the parameter
first followed by the column name(s) after the operator.

Default all filter definitions are applied to <many- t o- one/ > and <one- t o- one/ > elements. Y ou can turn off this
behaviour by using use- many- t o- one attribute on <fi | t er - def / > element.

<filter-def name="effectiveDate" use-nmany-to-one="false"/>

NHibernate 5.1 165

Chapter 20. Improving performance

20.1. Fetching strategies

A fetching strategy is the strategy NHibernate will use for retrieving associated objects if the application needs
to navigate the association. Fetch strategies may be declared in the O/R mapping metadata, or overridden by a
particular HQL or Cri teri a query.

NHibernate defines the following fetching strategies:

< Join fetching - NHibernate retrieves the associated instance or collection in the same SELECT, using an ouT-
ER JON.

« Sdect fetching - a second SELECT is used to retrieve the associated entity or collection. Unless you explicitly
disable lazy fetching by specifying | azy="f al se", this second select will only be executed when you actu-
ally access the association.

* Subselect fetching - a second SELECT is used to retrieve the associated collections for al entities retrieved in
a previous query or fetch. Unless you explicitly disable lazy fetching by specifying | azy="f al se", this
second select will only be executed when you actually access the association.

e "Extra-lazy" collection fetching - individual elements of the collection are accessed from the database as
needed. NHibernate tries not to fetch the whole collection into memory unless absolutely needed (suitable
for very large collections)

e Batch fetching - an optimization strategy for select fetching - NHibernate retrieves a batch of entity in-
stances or collections in asingle SELECT, by specifying alist of primary keys or foreign keys.

NHibernate also distinguishes between:

« Immediate fetching - an association, collection or attribute is fetched immediately, when the owner is
|loaded.

e Lazy collection fetching - a collection is fetched when the application invokes an operation upon that collec-
tion. (Thisisthe default for collections.)

» Proxy fetching - a single-valued association is fetched when a method other than the identifier getter isin-
voked upon the associated object.

We have two orthogonal notions here: when is the association fetched, and how is it fetched (what SQL is
used). Don't confuse them! We use f et ch to tune performance. We may use | azy to define a contract for what
datais aways available in any detached instance of a particular class.

20.1.1. Working with lazy associations

By default, NHibernate uses lazy select fetching for collections and lazy proxy fetching for single-valued asso-
ciations. These defaults make sense for ailmost all associationsin amost all applications.

However, lazy fetching poses one problem that you must be aware of. Access to alazy association outside of
the context of an open NHibernate session will result in an exception. For example:

NHibernate 5.1 166

Improving performance

I Di ctionary<string, int> pernmnissions;
using (var s = sessions. OpenSession())
using (Transaction tx = s.Begi nTransaction())

{
User u = s.CreateQuery("from User u where u. Nanme=: user Nane")
.Set String("userNanme", userNane). Uni queResul t <User>();
perm ssions = u. Perm ssions;
tx. Commit();
}
int accesslLevel = perm ssions["accounts"]; // Error!

Since the per ni ssi ons collection was not initialized when the | Sessi on was closed, the collection will not be
able to load its state. NHibernate does not support lazy initialization for detached objects. The fix is to move
the code that reads from the collection to just before the transaction is committed.

Alternatively, we could use a non-lazy collection or association, by specifying | azy="f al se" for the associ-
ation mapping. However, it is intended that lazy initialization be used for aimost all collections and associ-
ations. If you define too many non-lazy associations in your object model, NHibernate will end up needing to
fetch the entire database into memory in every transaction!

On the other hand, we often want to choose join fetching (which is non-lazy by nature) instead of select fetch-
ing in a particular transaction. We'll now see how to customize the fetching strategy. In NHibernate, the mech-
anisms for choosing afetch strategy are identical for single-valued associations and collections.

20.1.2. Tuning fetch strategies

Select fetching (the default) is extremely vulnerable to N+1 selects problems, so we might want to enable join
fetching in the mapping document:

<set name="Per m ssi ons”
fetch="join">
<key col um="userld"/>
<one-to-many cl ass="Perm ssi on"/>
</ set

<many-t o- one name="Mther" class="Cat" fetch="join"/>

Thet et ch strategy defined in the mapping document affects:

e retrieval viaGet () or Load()

retrieval that happens implicitly when an association is navigated

* ICriteriadqueries

HQL queriesif subsel ect fetching isused

No matter what fetching strategy you use, the defined non-lazy graph is guaranteed to be loaded into memory.
Note that this might result in several immediate selects being used to execute a particular HQL query.

Usually, we don't use the mapping document to customize fetching. Instead, we keep the default behavior, and
override it for a particular transaction, using I eft join fetch in HQL. Thistells NHibernate to fetch the asso-
ciation eagerly in the first select, using an outer join. Inthe i criteria query API, you would use Set Fet ch-
Mode(Fet chMbde. Joi n) .

NHibernate 5.1 167

Improving performance

If you ever feel like you wish you could change the fetching strategy used by Get () or Load(), Simply use a
ICriteriaquery, for example:

User user = session.CreateCriteria(typeof(User))
. Set Fet chMbde(" Per mi ssi ons", Fet chMbde. Joi n)
. Add(Expression. Eq("Id", userld))
. Uni queResul t <User >();

(Thisis NHibernate's equivalent of what some ORM solutions call a"fetch plan”.)

A completely different way to avoid problems with N+1 selects is to use the second-level cache, or to enable
batch fetching.

20.1.3. Single-ended association proxies

Lazy fetching for collections is implemented using NHibernate's own implementation of persistent collections.
However, a different mechanism is needed for lazy behavior in single-ended associations. The target entity of
the association must be proxied. NHibernate implements lazy initializing proxies for persistent objects using
runtime bytecode enhancement.

By default, NHibernate generates proxies (at startup) for all persistent classes and uses them to enable lazy
fetching of many- t o- one and one- t o- one associations.

The mapping file may declare an interface to use as the proxy interface for that class, with the proxy attribute.
By default, NHibernate uses a subclass of the class. Note that the proxied class must implement a non-private
default constructor. We recommend this constructor for all persistent classes!

There are some gotchas to be aware of when extending this approach to polymorphic classes, eg.

<cl ass nane="Cat" proxy="Cat">

</ subcl ass>
</ cl ass>

Firstly, instances of cat will never be castable to Donest i cCat , even if the underlying instance is an instance of
Donesti cCat :

/1 instantiate a proxy (does not hit the db)
Cat cat = session. Load<Cat>(id);
/1 hit the db to initialize the proxy
if (cat.lsDonesticCat) {
DonesticCat dc = (DomesticCat) cat; // Error!

Secondly, it is possible to break proxy ==.

[/l instantiate a Cat proxy
Cat cat = session. Load<Cat>(id);
Donesti cCat dc =
/1 acquire new DonesticCat proxy!
sessi on. Load<Donesti cCat >(i d);
Consol e. WitelLine(cat == dc); // false

However, the situation is not quite as bad as it looks. Even though we now have two references to different
proxy objects, the underlying instance will still be the same object:

NHibernate 5.1 168

Improving performance

cat. Wight = 11.0; // hit the db to initialize the proxy
Consol e. WitelLine(dc.Wight); // 11.0

Third, you may not use a proxy for aseal ed class or a class with any non-overridable public members.

Finaly, if your persistent object acquires any resources upon instantiation (eg. in initializers or default con-
structor), then those resources will also be acquired by the proxy. The proxy classis an actual subclass of the
persistent class.

These problems are all due to fundamental limitations in .NET's single inheritance model. If you wish to avoid
these problems your persistent classes must each implement an interface that declares its business methods.
Y ou should specify these interfaces in the mapping file. eg.

<cl ass nane="Catl npl" proxy="ICat">
<subcl ass nane="DonesticCatlnpl" proxy="IDonesticCat">

</ subcl ass>
</ cl ass>

where cat I npl implements the interface | cat and Domrest i cCat | npl implements the interface | Donest i cCat .
Then proxies for instances of | cat and | Donest i cCat may be returned by Load() or Enurer abl e() . (Note that
Li st () doesnot usually return proxies.)

| Cat cat = session. Load<Catl npl >(catid);

using(var iter = session
.CreateQuery("from Catlnpl as cat where cat.Name='fritz'")
. Enuner abl e<Cat | nmpl >()
. Get Enunerator())

iter. MoveNext ();
ICat fritz = iter.Current;

Relationships are also lazily initialized. This means you must declare any properties to be of type | cat, not
Cat I npl .

Certain operations do not require proxy initialization

e Equal s(), if the persistent class does not override Equal s()
e GetHashCode(), if the persistent class does not override Get HashCode()
* Theidentifier getter method

NHibernate will detect persistent classes that override Equal s() Or Get HashCode() .

20.1.4. Initializing collections and proxies

A LazylnitializationException Will be thrown by NHibernate if an uninitialized collection or proxy is ac-
cessed outside of the scope of the | Sessi on, ie. when the entity owning the collection or having the reference to
the proxy isin the detached state.

Sometimes we need to ensure that a proxy or collection is initialized before closing the | Sessi on. Of course,
we can alway force initialization by calling cat . Sex Of cat . Ki t t ens. Count , for example. But that is confusing
to readers of the code and is not convenient for generic code.

The static methods NHi bernateUtil.Initialize() and NH bernateUtil.lslnitialized() provide the ap-
plication with a convenient way of working with lazily initialized collections or proxies. NH ber nat eUt -

NHibernate 5.1 169

Improving performance

il.Initialize(cat) will forcetheinitialization of aproxy, cat, aslong asits| Sessi on is still open. NHi ber n-
ateUtil.lnitialize(cat.Kittens) hasasimilar effect for the collection of kittens.

Another option is to keep the | Sessi on open until all needed collections and proxies have been loaded. In some
application architectures, particularly where the code that accesses data using NHibernate, and the code that
uses it are in different application layers or different physical processes, it can be a problem to ensure that the
I Sessi on isopen when acollection isinitialized. There are two basic ways to deal with thisissue:

* Inaweb-based application, a Ht t pMbdul e can be used to close the | Sessi on only at the very end of a user
reguest, once the rendering of the view is complete (the Open Session in View pattern). Of course, this
places heavy demands on the correctness of the exception handling of your application infrastructure. It is
vitally important that the | Sessi on is closed and the transaction ended before returning to the user, even
when an exception occurs during rendering of the view. See the NHibernate Wiki for examples of this
"Open Session in View" pattern.

* Inan application with a separate business tier, the business logic must "prepare” all collections that will be
needed by the web tier before returning. This means that the business tier should load all the data and return
al the data already initialized to the presentation/web tier that is required for a particular use case. Usualy,
the application calls NHi bernateUti | . I nitialize() for each collection that will be needed in the web tier
(this call must occur before the session is closed) or retrieves the collection eagerly using a NHibernate
query with a FETCH clause or aFet chvode. Join inl Criteria. Thisisusualy easier if you adopt the Com-
mand pattern instead of a Session Facade.

e You may also attach a previously loaded object to a new | Sessi on with Merge() or Lock() before access-
ing uninitialized collections (or other proxies). No, NHibernate does not, and certainly should not do this
automatically, since it would introduce ad hoc transaction semantics!

Sometimes you don't want to initialize a large collection, but still need some information about it (like its size)
or asubset of the data.

Y ou can use a collection filter to get the size of a collection without initializing it:

s.CreateFilter(collection, "select count(*)").UniqueResult<long>()

The createFil ter() method is also used to efficiently retrieve subsets of a collection without needing to ini-
tialize the whole collection:

s.CreateFilter(lazyCollection, "").SetFirstResult(0).Set MaxResults(10).List<Entity>();

20.1.5. Using batch fetching

NHibernate can make efficient use of batch fetching, that is, NHibernate can load several uninitialized proxies
if one proxy is accessed (or collections). Batch fetching is an optimization of the lazy select fetching strategy.
There are two ways you can tune batch fetching: on the class and the collection level.

Batch fetching for classeg/entities is easier to understand. Imagine you have the following situation at runtime:
You have 25 cat instances loaded in an | Sessi on, each cat has areference to its Oaner, aPer son. The Per son
class is mapped with a proxy, | azy="true". If you now iterate through all cats and call cat. owner on each,
NHibernate will by default execute 25 SELECT statements, to retrieve the proxied owners. Y ou can tune this be-
havior by specifying abat ch- si ze in the mapping of Per son:

<cl ass nanme="Per son" batch-size="10">...</cl ass>

NHibernate 5.1 170

Improving performance

NHibernate will now execute only three queries, the patternis 10, 10, 5.

You may also enable batch fetching of collections. For example, if each Person has alazy collection of Cat s,
and 10 persons are currently loaded in the | Sesssi on, iterating through all persons will generate 10 SELECTS,
one for every call to per son. Cat s. If you enable batch fetching for the cat s collection in the mapping of per -
son, NHibernate can pre-fetch collections:

<cl ass nanme="Per son" >
<set nane="Cats" batch-size="3">

</ set >
</ cl ass>

With abat ch- si ze of 3, NHibernate will load 3, 3, 3, 1 collectionsin four SELECTS. Again, the value of the at-
tribute depends on the expected number of uninitialized collectionsin a particular Sessi on.

Batch fetching of collections is particularly useful if you have a nested tree of items, ie. the typical hill-
of-materials pattern. (Although a nested set or a materialized path might be a better option for read-mostly
trees.)

Note: if you set def aul t _bat ch_f et ch_si ze in configuration, NHibernate will configure the batch fetch optim-
ization for lazy fetching globally. Batch sizes specified at more granular level take precedence.

20.1.6. Using subselect fetching

If one lazy collection or single-valued proxy has to be fetched, NHibernate loads all of them, re-running the ori-
ginal query in asubselect. Thisworks in the same way as batch-fetching, without the piecemeal loading.

20.2. The Second Level Cache

A NHibernate | Sessi on is a transaction-level cache of persistent data. It is possible to configure a cluster or
process-level (1 Sessi onFact or y-level) cache on a class-by-class and collection-by-collection basis. You may
even plug in a clustered cache. Be careful. Caches are never aware of changes made to the persistent store by
another application (though they may be configured to regularly expire cached data). In NHibernate 1.x the
second level cache does not work correctly in combination with distributed transactions.

The second level cache requires the use of transactions, be it through transaction scopes or NHibernate transac-
tions. Interacting with the data store without an explicit transaction is discouraged, and will not allow the
second level cache to work as intended.

By default, NHibernate uses HashtableCache for process-level caching. You may choose a different imple-
mentation by specifying the name of a class that implements NHi ber nat e. Cache. | CachePr ovi der using the
property cache. provi der _cl ass.

Table 20.1. Cache Providers

Cache Provider class Type Cluster Safe | Query Cache
Supported

Hashtable NHi ber n- memory yes

(notintended | at e. Cache. Hasht abl eCachePr ovi der

for produc-

tion use)

NHibernate 5.1 171

Improving performance

Cache Provider class Type Cluster Safe | Query Cache
Supported

ASP.NET NHi ber n- memory yes

Cache at e. Caches. SysCache. SysCachePr ovi der,

(System.Web. NHi ber nat e. Caches. SysCache

Cache)

Prevalence NHi ber n- memory, disk yes

Cache ate. Caches. Preval ence. Preval enceCacheP

rovi der, NHi bernate. Caches. Preval ence

20.2.1. Cache mappings

The <cache> element of a class or collection mapping has the following form:

<cache
usage="read-wite| nonstrict-read-wite|read-only" (1)
r egi on="Regi onNang" (2)
/>

(1) usage specifiesthe caching strategy: read-write, nonstrict-read-wite Of read-only
(2) region (optional, defaults to the class or collection role name) specifies the name of the second level
cacheregion

Alternatively (preferably?), you may specify <cl ass-cache> and <col | ecti on- cache> elements in hi ber n-
ate.cfg. xnm .

The usage attribute specifies a cache concurrency strategy.

20.2.2. Strategy: read only

If your application needs to read but never modify instances of a persistent class, aread- onl y cache may be
used. Thisisthe simplest and best performing strategy. Its even perfectly safe for usein acluster.

<cl ass nane="Eg. | nmut abl e" nut abl e="f al se" >
<cache usage="read-only"/>

</ cl ass>

20.2.3. Strategy: read/write

If the application needs to update data, aread-wite cache might be appropriate. This cache strategy should
never be used if seriadizable transaction isolation level is required. You should ensure that the transaction is
completed when | Sessi on. O ose() Or | Sessi on. Di sconnect () iscaled. If you wish to use this strategy in a
cluster, you should ensure that the underlying cache implementation supports locking. The built-in cache pro-
viders do not.

<cl ass nane="eg.Cat" >
<cache usage="read-write"/>

<set name="Kittens" ... >
<cache usage="read-write"/>

</ set >

NHibernate 5.1 172

Improving performance

</ cl ass>

20.2.4. Strategy: nonstrict read/write

If the application only occasionally needs to update data (ie. if it is extremely unlikely that two transactions
would try to update the same item simultaneously) and strict transaction isolation is not required, anonstri ct -
read-wite cache might be appropriate. When using this strategy you should ensure that the transaction is
completed when | Sessi on. O ose() Of | Sessi on. Di sconnect () iscalled.

The following table shows which providers are compatible with which concurrency strategies.

Table 20.2. Cache Concurrency Strategy Support

Cache read-only nonstrict-read-write read-write
Hashtable (not intended yes yes yes

for production use)

SysCache yes yes yes
PrevalenceCache yes yes yes

Refer to Chapter 26, NHibernate.Caches for more details.

20.3. Managing the caches

Whenever you pass an object to Save(), Updat e() Or SaveOr Updat e() and whenever you retrieve an object us-
ing Load(), Get (), Li st (), or Enuner abl e() , that object is added to the internal cache of the | Sessi on.

When Fl ush() is subsequently called, the state of that object will be synchronized with the database. If you do
not want this synchronization to occur or if you are processing a huge number of objects and need to manage
memory efficiently, the Evi ct () method may be used to remove the object and its collections from the first-
level cache.

| Enuner abl e<Cat > cats = sess
.CreateQuery("from Eg. Cat as cat")
.List<Cat>(); //a huge result set
foreach (Cat cat in cats)

{
DoSonet hi ngW t hACat (cat) ;

sess. Evict(cat);

NHibernate will evict associated entities automatically if the association is mapped with cascade="al 1" or
cascade="al | - del et e- or phan".

The | Sessi on aso provides acont ai ns() method to determineif an instance belongs to the session cache.
To completely evict all objects from the session cache, call | Sessi on. d ear ()

For the second-level cache, there are methods defined on | Sessi onFact ory for evicting the cached state of an
instance, entire class, collection instance or entire collection role.

/levict a particular Cat

NHibernate 5.1 173

Improving performance

sessi onFactory. Evi ct (typeof (Cat), catld);

/levict all Cats

sessi onFactory. Evi ct (typeof (Cat));

/levict a particular collection of kittens

sessi onFactory. EvictCol | ecti on("Eg. Cat. Kittens", catld);
/levict all kitten collections

sessi onFactory. Evict Col | ecti on("Eg. Cat. Kittens");

20.4. The Query Cache

Query result sets may also be cached. Thisis only useful for queries that are run frequently with the same para-
meters. To use the query cache you must first enable it:

<property nane="cache. use_query_cache">true</ property>>

This setting causes the creation of two new cache regions - one holding cached query result sets (NHi ber n-
at e. Cache. St andar dQuer yCache), the other holding timestamps of the most recent updates to queryable tables
(Updat eTi nest anpsCache). Those region names will be prefixed by the cache region prefix if
cache. r egi on_pr ef i x Setting is configured.

If you use a cache provider handling an expiration for cached entries, you should set the Updat e-
Ti mest anpsCache region expiration to a value greater than the expiration of query cache regions. (Or disableits
expiration.) Otherwise the query cache may yield stale data.

Note that the query cache does not cache the state of any entities in the result set; it caches only identifier val-
ues and results of value type. So the query cache should aways be used in conjunction with the second-level
cache.

Most queries do not benefit from caching, so by default queries are not cached. To enable caching, call
| Query. Set Cacheabl e(true). This call allows the query to look for existing cache results or add its results to
the cache when it is executed.

If you require fine-grained control over query cache expiration policies, you may specify a named cache region
for aparticular query by calling | Query. Set CacheRegi on() .

var bl ogs = sess. CreateQuery("from Bl og bl og where bl og. Bl ogger = : bl ogger")
.SetEntity("bl ogger", bl ogger)
. Set MaxResul t s(15)
. Set Cacheabl e(true)
. Set CacheRegi on("front pages")
. Li st <Bl og>();

If the query should force arefresh of its query cache region, you may call | Query. Set For ceCacheRef resh() to
true. Thisis particularly useful in cases where underlying data may have been updated via a separate process
(i.e., not modified through NHibernate) and allows the application to selectively refresh the query cache regions
based on its knowledge of those events. This is a more efficient alternative to eviction of a query cache region
vial Sessi onFact ory. Evi ct Queri es().

20.5. Understanding Collection performance

We've already spent quite some time talking about collections. In this section we will highlight a couple more
issues about how collections behave at runtime.

NHibernate 5.1 174

Improving performance

20.5.1. Taxonomy

NHibernate defines three basic kinds of collections:

e collections of values
e Oneto many associations
e many to many associations

This classification distinguishes the various table and foreign key relationships but does not tell us quite
everything we need to know about the relational model. To fully understand the relationa structure and per-
formance characteristics, we must also consider the structure of the primary key that is used by NHibernate to
update or delete collection rows. This suggests the following classification:

* indexed collections
e sels
e bags

All indexed collections (maps, lists, arrays) have a primary key consisting of the <key> and <i ndex> columns.
In this case collection updates are usually extremely efficient - the primary key may be efficiently indexed and
aparticular row may be efficiently located when NHibernate tries to update or deleteit.

Sets have a primary key consisting of <key> and element columns. This may be less efficient for some types of
collection element, particularly composite elements or large text or binary fields; the database may not be able
to index a complex primary key as efficiently. On the other hand, for one to many or many to many associ-
ations, particularly in the case of synthetic identifiers, it is likely to be just as efficient. (Side-note: if you want
SchemaExport to actually create the primary key of a <set> for you, you must declare all columns as not -
nul | ="true".)

<i dbag> mappings define a surrogate key, so they are aways very efficient to update. In fact, they are the best
case.

Bags are the worst case. Since a bag permits duplicate element values and has no index column, no primary key
may be defined. NHibernate has no way of distinguishing between duplicate rows. NHibernate resolves this
problem by completely removing (in a single DELETE) and recreating the collection whenever it changes. This
might be very inefficient.

Note that for a one-to-many association, the "primary key" may not be the physical primary key of the database
table - but even in this case, the above classification is still useful. (It till reflects how NHibernate "locates" in-
dividual rows of the collection.)

20.5.2. Lists, maps, idbags and sets are the most efficient collections to up-
date

From the discussion above, it should be clear that indexed collections and (usually) sets allow the most efficient
operation in terms of adding, removing and updating elements.

There is, arguably, one more advantage that indexed collections have over sets for many to many associations
or collections of values. Because of the structure of an | set, NHibernate doesn't ever UPDATE a row when an

NHibernate 5.1 175

Improving performance

element is "changed". Changes to an 1 set always work via | NSERT and DELETE (of individual rows). Once
again, this consideration does not apply to one to many associations.

After observing that arrays cannot be lazy, we would conclude that lists, maps and idbags are the most perform-
ant (non-inverse) collection types, with sets not far behind. Sets are expected to be the most common kind of
collection in NHibernate applications. This is because the "set" semantics are most natural in the relational
model.

However, in well-designed NHibernate domain models, we usually see that most collections are in fact one-
to-many associations with i nverse="true". For these associations, the update is handled by the many-to-one
end of the association, and so considerations of collection update performance simply do not apply.

20.5.3. Bags and lists are the most efficient inverse collections

Just before you ditch bags forever, there is a particular case in which bags (and aso lists) are much more per-
formant than sets. For a collection with i nver se="true" (the standard bidirectiona one-to-many relationship
idiom, for example) we can add elements to a bag or list without needing to initialize (fetch) the bag elements!
Thisis because I Li st. Add() must always succeed for abag or I Li st (unlike an 1 Set). This can make the fol-
lowing common code much faster.

Parent p = sess. Load<Parent >(id);
Child ¢ = new Child();
c. Parent = p;
p. Chil dren. Add(c); //no need to fetch the collection!
sess. Fl ush();

20.5.4. One shot delete

Occasionally, deleting collection elements one by one can be extremely inefficient. NHibernate isn't completely
stupid, so it knows not to do that in the case of an newly-empty collection (if you caled i st. d ear (), for ex-
ample). In this case, NHibernate will issue a single DELETE and we are done!

Suppose we add a single element to a collection of size twenty and then remove two elements. NHibernate will
issue one | NSERT statement and two DELETE statements (unless the collection is a bag). This is certainly desir-
able.

However, suppose that we remove eighteen elements, leaving two and then add thee new elements. There are
two possible ways to proceed:

* Deélete eighteen rows one by one and then insert three rows
« Remove the whole collection (in one SQL DELETE) and insert al five current elements (one by one)

NHibernate isn't smart enough to know that the second option is probably quicker in this case. (And it would
probably be undesirable for NHibernate to be that smart; such behaviour might confuse database triggers, etc.)

Fortunately, you can force this behaviour (ie. the second strategy) at any time by discarding (ie. dereferencing)
the original collection and returning a newly instantiated collection with all the current elements. This can be
very useful and powerful from timeto time.

Of course, one-shot-del ete does not apply to collections mapped i nver se="t r ue".

20.6. Batch updates

NHibernate 5.1 176

Improving performance

NHibernate supports batching SQL update commands (I NSERT, UPDATE, DELETE) with the following limitations:

« the NHibernate's drive used for your RDBM S may not supports batching,

e since the implementation uses reflection to access members and types in System.Data assembly which are
not normally visible, it may not function in environments where necessary permissions are not granted,

e optimistic concurrency checking may be impaired since ADO.NET 2.0 does hot return the number of rows
affected by each statement in the batch, only the total number of rows affected by the batch.

Update batching is enabled by setting adonet . bat ch_si ze t0 a hon-zero value.

20.7. Multi Query

This functionality allows you to execute several HQL queries in one round-trip against the database server. A
simple use case is executing a paged query while also getting the total count of results, in a single round-trip.
Hereisasimple example:

IMultiQuery nmultiQuery = s.CreateMul ti Query()
.Add(s. CreateQuery("fromltemi where i.ld > ?")
.Set I nt32(0, 50). SetFirstResult(10))
. Add(s. CreateQuery("sel ect count(*) fromltemi where i.ld > ?")
. SetInt32(0, 50));
IList results = multi Query. List();
IList items = (IList)results[O];
Il ong count = (long)((lList)results[1])[0];

The result isalist of query results, ordered according to the order of queries added to the multi query. Named
parameters can be set on the multi query, and are shared among all the queries contained in the multi query, like
this:

IList results = s.CreateMil ti Query()
.Add(s. CreateQuery("fromltemi where i.ld > :id")
. Set FirstResul t (10))
.Add("select count(*) fromltemi where i.ld > :id")
.SetInt32("id", 50)
.List();
IList items = (lList)results[O0];
I ong count = (long)((lList)results[1])[0];

Positional parameters are not supported on the multi query, only on the individual queries.

As shown above, if you do not need to configure the query separately, you can simply pass the HQL directly to
the ! Mul ti Query. Add() method.

Multi query is executed by concatenating the queries and sending the query to the database as a single string.
This means that the database should support returning several result sets in a single query. At the moment this
functionality is only enabled for Microsoft SQL Server and SQL.ite.

Note that the database server is likely to impose a limit on the maximum number of parameters in a query, in
which case the limit applies to the multi query as awhole. Queries using i n with a large number of arguments
passed as parameters may easily exceed this limit. For example, SQL Server has alimit of 2,100 parameters per
round-trip, and will throw an exception executing this query:

IList all Enpl oyeesld = ...; //1,500 itens
IMulti Query multi Query = s. CreateMul ti Query()
. Add(s. CreateQuery("from Enpl oyee e where e.ld in :enplds")

NHibernate 5.1 177

Improving performance

. Set Par anet er ("enpl ds", all Enpl oyeesl d). Set Fi rst Resul t (10))
. Add(s. CreateQuery("select count(*) from Enpl oyee e where e.ld in :enplds")
. Set Par anet er ("enpl ds", all Enpl oyeesl d));
IList results = multiQuery.List(); // will throw an exception from SQL Server

An interesting usage of this feature is to load several collections of an object in one round-trip, without an ex-
pensive cartesian product (blog * users* posts).

Blog blog = s.CreateMul ti Query()
.Add("select b fromBlog b left join fetch b. Users where b.Id
.Add("select b fromBlog b left join fetch b. Posts where b.Id
.Setlnt32("id", 123)
. Uni queResul t <Bl og>() ;

no
=
\:

20.8. Multi Criteria

Thisis the counter-part to Multi Query, and allows you to perform several criteriaqueriesin a single round trip.
A simple use case is executing a paged query while also getting the total count of results, in a single round-trip.
Hereisasimple example:

IMultiCriteria multiCrit = s.CreateMultiCriteria()
.Add(s.CreateCriteria(typeof (ltem)
. Add(Expression. & ("Id", 50))
. Set Fi rst Resul t (10))
.Add(s.CreateCriteria(typeof(lten))
. Add(Expression. & ("Id", 50))
. Set Proj ect (Proj ecti ons. RowCount ()));
IList results = multiCrit.List();
IList items = (lList)results[O0];
long count = (long)((lList)results[1])[O0];

Theresult isalist of query results, ordered according to the order of queries added to the multi criteria.

You can add | Criteria Or DetachedCriteria to the Multi Criteria query. In fact, using DetachedCriteria in
this fashion has some interesting implications.

Det achedCriteria custonersCriteria = AuthorizationService. Get Associ at edCust oner sQuery();
IList results = session.CreateMultiCriteria()
. Add(custonersCriteria)
. Add(Det achedCriteria. For<Policy>()
. Add(Subqueri es. Propertyln("id",
CriteriaTransforner. Cl one(custonmersCriteria)
. Set Proj ection(Projections.ld())

)))
.List();

| Col | ecti on<Cust omer> custonmers = Col | ecti onHel per. ToArray<Custoner>(results[0]);
| Col | ection<Policy> policies = CollectionHel per. ToArray<Pol i cy>(results[1]);

Asyou see, we get a query that represents the customers we can access, and then we can utilize this query fur-
ther in order to perform additional logic (getting the policies of the customers we are associated with), al in a
single database round-trip.

NHibernate 5.1 178

Chapter 21. Toolset Guide

Roundtrip engineering with NHibernate is possible using a set of commandline tools maintained as part of the
NHibernate project, along with NHibernate support built into various code generation tools (MyGeneration,
CodeSmith, ObjectMapper, AndroMDA).

The NHibernate main package comes bundled with the most important tool (it can even be used from "inside"
NHibernate on-the-fly):

» DDL schema generation from a mapping file (aka SchemaExpor t , hbn2ddl)

Other tools directly provided by the NHibernate project are delivered with a separate package, NHibernateCon-
trib. This package includes tools for the following tasks:

« mapping file generation from .NET classes marked with attributes (NHi ber nat e. Mappi ng. Attri butes, Of
NHMA for short)

Third party tools with NHibernate support are:

« CodeSmith, MyGeneration, and ObjectMapper (mapping file generation from an existing database schema)

« AndroMDA (MDA (Model-Driven Architecture) approach generating code for persistent classes from
UML diagrams and their XML/XMI representation)

These 3rd party tools are not documented in this reference. Please refer to the NHibernate website for up-
to-date information.

21.1. Schema Generation

The generated schemaincludes referential integrity constraints (primary and foreign keys) for entity and collec-
tion tables. Tables and sequences are also created for mapped identifier generators.

Y ou must specify a SQL Di al ect viathehi ber nat e. di al ect property when using thistool.

21.1.1. Customizing the schema

Many NHibernate mapping elements define an optional attribute named | engt h. You may set the length of a
column with this attribute. (Or, for numeric/decimal datatypes, the precision.)

Some tags also accept a not-nul | attribute (for generating a NOT NULL constraint on table columns) and a
uni que attribute (for generating UNI QUE constraint on table columns).

Some tags accept an i ndex attribute for specifying the name of an index for that column. A uni que- key attrib-
ute can be used to group columns in a single unit key constraint. Currently, the specified value of the uni que-
key attribute is not used to name the constraint, only to group the columnsin the mapping file.

Examples:
<property nane="Foo" type="String" |ength="64" not-null="true"/>
<many-t o- one nanme="Bar" foreign-key="fk _foo_bar" not-null="true"/>

NHibernate 5.1 179

Toolset Guide

<el enent col um="seri al _nunber" type="Int64" not-null="true" uni que="true"/>

Alternatively, these elements al so accept a child <col um> element. Thisis particularly useful for multi-column
types:

<property nanme="Foo" type="String">
<col um nane="fo0o0" | ength="64" not-null="true" sql-type="text"/>
</ property>

<property nane="Bar" type="M. Custonmlypes. Ml ti Col umType, M. CustonTypes"/>

<col um nane="fee" not-null="true" index="bar _idx"/>
<col um nane="fi" not-null="true" index="bar_idx"/>
<col um nanme="fo" not-null="true" index="bar _idx"/>

</ property>

Thesql -t ype attribute alows the user to override the default mapping of NHibernate type to SQL datatype.
The check attribute allows you to specify a check constraint.

<property name="Foo" type="Int32">
<col um nane="foo" check="foo > 10"/>
</ property>
<cl ass nanme="Foo" tabl e="foos" check="bar < 100.0">

<property name="Bar" type="Single"/>
</ cl ass>

Table21.1. Summary

Attribute Values I nter pretation

| engt h number column length/decimal precision

not - nul | true| fal se specifies that the column should be non-nullable

uni que true| fal se specifies that the column should have a unique constraint

i ndex i ndex_name specifies the name of a (multi-column) index

uni que- key uni que_key_nane specifies the name of a multi-column unique constraint

f orei gn- key forei gn_key_nane specifies the name of the foreign key constraint generated

for an association, use it on <one-to-one>, <many-to-one>,
<key>, and <many-to-many> mapping elements. Note that
i nverse="true" sideswill not be considered by SchemaEx-

port.

sql -type col um_type overrides the default column type (attribute of <col urm>
element only)

check SQL expression create an SQL check constraint on either column or table

21.1.2. Running the tool

The schemaExport tool writesa DDL script to standard out and/or executes the DDL statements.

NHibernate 5.1 180

Toolset Guide

Y ou may embed SchemaExport inyour application:

Configuration cfg =;
new SchemaExport(cfg). Create(fal se, true);

NHibernate 5.1 181

Chapter 22. Example: Parent/Child

One of the very first things that new users try to do with NHibernate is to model a parent / child type relation-
ship. There are two different approaches to this. For various reasons the most convenient approach, especialy
for new users, isto model both par ent and chi | d as entity classes with a<one- t o- many> association from Par -
ent to Chi | d. (The alternative approach is to declare the chi | d as a <conposi t e- el ement >.) Now, it turns out
that default semantics of a one to many association (in NHibernate) are much less close to the usual semantics
of a parent / child relationship than those of a composite element mapping. We will explain how to use a bid-
irectional one to many association with cascades to model a parent / child relationship efficiently and eleg-
antly. It'snot at all difficult!

22.1. A note about collections

NHibernate collections are considered to be alogical part of their owning entity; never of the contained entities.
Thisisacrucia distinction! It has the following consequences.

¢ When we remove / add an object from / to a collection, the version number of the collection owner isincre-
mented.

« If an object that was removed from a collection is an instance of a value type (eg, a composite el ement), that
object will cease to be persistent and its state will be completely removed from the database. Likewise,
adding a value type instance to the collection will cause its state to be immediately persistent.

e On the other hand, if an entity is removed from a collection (a one-to-many or many-to-many association),
it will not be deleted, by default. This behavior is completely consistent - a change to the interna state of
another entity should not cause the associated entity to vanish! Likewise, adding an entity to a collection
does not cause that entity to become persistent, by default.

Instead, the default behavior is that adding an entity to a collection merely creates alink between the two entit-
ies, while removing it removes the link. Thisis very appropriate for all sorts of cases. Where it is not appropri-
ate at al is the case of a parent / child relationship, where the life of the child is bound to the lifecycle of the
parent.

22.2. Bidirectional one-to-many

Suppose we start with asimple <one- t o- many> association from Par ent to Chi | d.

<set nanme="Children">
<key colum="parent _id" />
<one-to-many class="Child" />
</set>

If we were to execute the following code

Parent p = ;
Child ¢ = new Child();
p. Chi | dren. Add(c);
sessi on. Save(c);
session. Fl ush();

NHibernate would issue two SQL statements:

NHibernate 5.1 182

Example: Parent/Child

e an| NSERT to create the record for ¢

* an UPDATE to create thelink fromp toc

Thisisnot only inefficient, but also violates any NOT NULL constraint on the par ent _i d column.

The underlying cause is that the link (the foreign key par ent _i d) from p to c is not considered part of the state
of the chi | d object and is therefore not created in the | NSERT. So the solution is to make the link part of the

Chi | d mapping.

<many-t o-one nane="Parent" col um="parent _id" not-null="true"/>

(We aso need to add the Par ent property to the chi | d class.)

Now that the cni | d entity is managing the state of the link, we tell the collection not to update the link. We use

thei nver se attribute.

<set name="Children" inverse="true">
<key col um="parent _id"/>
<one-to-many class="Child"/>
</set>

The following code would be used to add a new chi | d.

Parent p = session. Load<Parent>(pid);
Child ¢ = new Child();

c. Parent = p;

p. Chi | dren. Add(c);

sessi on. Save(c);

sessi on. Fl ush();

And now, only one SQL 1 NSERT would be issued!
To tighten things up a bit, we could create an Addchi | d() method of Par ent .

public void AddChild(Child c)
{

c.Parent = this;

chi l dren. Add(c);

Now, the code to add a chi | d lookslike

Parent p = session. Load<Parent >(pi d);
Child ¢ = new Child();

p. AddChi | d(c);

sessi on. Save(c);

sessi on. Fl ush();

22.3. Cascading lifecycle

The explicit call to save() isstill annoying. We will address this by using cascades.

<set nane="Children" inverse="true" cascade="all">
<key col um="parent _id"/>
<one-to-many class="Child"/>

</ set>

NHibernate 5.1

183

Example: Parent/Child

This simplifies the code above to

Parent p = session. Load<Parent >(pi d);
Child ¢ = new Child();

p. AddChi I d(c);

session. Fl ush();

Similarly, we don't need to iterate over the children when saving or deleting a Par ent . The following removes p
and all its children from the database.

Parent p = session. Load<Parent>(pid);
sessi on. Del ete(p);
sessi on. Fl ush();

However, this code

Parent p = session. Load<Parent >(pi d);

/1 Get one child out of the set

| Enuner at or chil dEnunmerator = p. Chil dren. Get Enunerator () ;
chi | dEnuner at or . MoveNext () ;

Child ¢ = (Child) childEnunerator. Current;

p. Chi | dren. Renove(c);
c. Parent = null;
sessi on. Fl ush();

will not remove ¢ from the database; it will only remove the link to p (and cause a NOT NULL constraint viola
tion, in this case). Y ou need to explicitly Del et e() the cni | d.

Parent p = session. Load<Parent >(pi d);

/Il Get one child out of the set

| Enuner at or chil dEnunmerator = p. Chil dren. Get Enunerator ();
chi | dEnurrer at or . MoveNext () ;

Child ¢ = (Child) childEnunerator. Current;

p. Chi | dren. Renove(c);
session. Del ete(c);
sessi on. Fl ush();

Now, inour case, achi |l d can't really exist without its parent. So if we remove a chi | d from the collection, we
really do want it to be deleted. For this, we must use cascade="al | - del et e- or phan" .

<set name="Children" inverse="true" cascade="all -del ete-orphan">
<key col um="parent _id"/>
<one-to-many class="Child"/>

</ set>

Note: even though the collection mapping specifiesi nver se="t rue", cascades are still processed by iterating
the collection elements. So if you require that an object be saved, deleted or updated by cascade, you must add
it to the collection. It is not enough to simply set its parent.

22.4. Using cascading Updat e()

Suppose we loaded up a Par ent in one | Sessi on, made some changes in a Ul action and wish to persist these
changes in a new 1Session (by calling Updat e()). The Parent will contain a collection of children and, since
cascading update is enabled, NHibernate needs to know which children are newly instantiated and which rep-
resent existing rows in the database. L et's assume that both Par ent and chi | d have (synthetic) identifier proper-
ties of type I ong. NHibernate will use the identifier property value to determine which of the children are new.

NHibernate 5.1 184

Example: Parent/Child

(Y ou may also use the version or timestamp property, see Section 9.4.2, “Updating detached objects’.)

The unsaved- val ue attribute is used to specify the identifier value of a newly instantiated instance. In
NHibernate it is not necessary to specify unsaved- val ue explicitly.

The following code will update par ent and chi | d and insert newchi | d.

[/ parent and child were both | oaded in a previous session
par ent . AddChi | d(chi | d);

Child newChild = new Child();

par ent . AddChi | d(newChi | d) ;

sessi on. Updat e(parent) ;

sessi on. Fl ush();

Well, that is all very well for the case of a generated identifier, but what about assigned identifiers and compos-
ite identifiers? Thisis more difficult, sSince unsaved- val ue can't distinguish between a newly instantiated object
(with an identifier assigned by the user) and an object loaded in a previous session. In these cases, you will
probably need to give NHibernate a hint; either

» define an unsaved- val ue On a<versi on> Of <t i mest anp> property mapping for the class.

e set unsaved-val ue="none" and explicitly Save() newly instantiated children before calling Up-
dat e(parent)

e set unsaved-val ue="any" and explicitly Update() previously persistent children before calling Up-
dat e(parent)

nul | is the default unsaved- val ue for assigned identifiers, none is the default unsaved- val ue for composite
identifiers.

There is one further possibility. Thereisanew I | nt er cept or method named | sTr ansi ent () which lets the ap-
plication implement its own strategy for distinguishing newly instantiated objects. For example, you could
define abase class for your persistent classes.

public class Persistent

{
private bool _saved = false;
public void OnSave()
{
_saved = true;
}
public void OnLoad()
{
_saved = true;
}
public void OnDel ete()
{
_saved = fal se;
}
public bool |sSaved
{
get { return _saved; }
}
}

(The saved property is non-persistent.) Now implement | sTr ansi ent (), dong with onLoad(), OnSave() and

NHibernate 5.1 185

Example: Parent/Child

OnDel et e() asfollows.

public object IsTransient(object entity)

{
if (entity is Persistent)
{
return ! ((Persistent) entity).lsSaved;
}
el se
{
return null;
}
}
public bool OnLoad(object entity,
obj ect id,
object[] state,
string[] propertyNanes,
I Type[] types)
{
if (entity is Persistent) ((Persistent) entity). OnLoad();
return false;
}

publ i ¢ bool ean OnSave(object entity,
object id,
object[] state,
string[] propertyNanes,
I Type[] types)

if (entity is Persistent) ((Persistent) entity).OnSave();
return false;

}

public virtual void OnDel ete(object entity,
obj ect id,
object[] state,
string[] propertyNanes,
I Type[] types)

if (entity is Persistent) ((Persistent) entity).OnDel ete();

22.5. Conclusion

There is quite a bit to digest here and it might look confusing first time around. However, in practice, it all
works out quite nicely. Most NHibernate applications use the parent / child pattern in many places.

We mentioned an dternative in the first paragraph. None of the above issues exist in the case of
<conposi t e- el ement > mappings, which have exactly the semantics of a parent / child relationship. Unfortu-
nately, there are two big limitations to composite element classes. composite el ements may not own collections,
and they should not be the child of any entity other than the unique parent. (However, they may have a surrog-
ate primary key, using an <i dbag> mapping.)

NHibernate 5.1 186

Chapter 23. Example: Weblog Application

23.1. Persistent Classes

The persistent classes represent a weblog, and an item posted in a weblog. They are to be modelled as a stand-
ard parent/child relationship, but we will use an ordered bag, instead of a set.

usi ng System
usi ng System Col | ecti ons. Generi c;

nanmespace Eg

{
public class Blog
{
public virtual long Id { get; set;}
public virtual IList<Bloglten> Itens { get; set;}
public virtual string Nane { get; set;}
}
}

usi ng System

nanespace Eg

{
public class Blogltem
{
public virtual Blog Blog { get; set;}
public virtual DateTinme DateTinme { get; set;}
public virtual long Id { get; set;}
public virtual string Text { get; set;}
public virtual string Title { get; set;}
}
}

23.2. NHibernate Mappings

The XML mappings should now be quite straightforward.

<?xm version="1.0" encodi ng="utf-8""?>
<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 2"
assenbl y="Eg" nanmespace="Eg">

<cl ass

nane="Bl og"

t abl e=" BLOGS"

| azy="true">

<id
name="1d"
col um="BLOG_| D' >
<generator class="native"/>

</id>

NHibernate 5.1 187

Example: Weblog Application

<property
nanme=" Nanme"
col um=" NAME"
not - nul | ="true"
uni que="true"/>

<bag
name="Itens"
i nverse="true"
| azy="true"
or der - by="DATE_TI ME"
cascade="al | ">

<key col um="BLOG | D'/ >
<one-to-many cl ass="Bl oglteni/>

</ bag>
</ cl ass>

</ hi ber nat e- mappi ng>

<?xm version="1.0" encodi ng="utf-8""?>
<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 2"
assenbl y="Eg" nanmespace="Eg">

<cl ass
nanme="Bl ogl t enf
tabl e="BLOG_| TEMS"
dynami c- updat e="true" >

<id
name="1d"
col um="BLOG | TEM | D' >
<generator class="native"/>
</id>
<property

name="Titl e"
col um="TI TLE"

not-nul |l ="true"/>
<property

name="Text"

col um="TEXT"

not-null ="true"/>
<property

nanme="Dat eTi me"
col um="DATE_TI ME"
not-null ="true"/>
<nmany-t o-one

name="Bl 0g"

col um="BLOG | D"
not-null ="true"/>

</ cl ass>

</ hi ber nat e- mappi ng>

23.3. NHibernate Code

The following class demonstrates some of the kinds of things we can do with these classes, using NHibernate.

NHibernate 5.1 188

Example: Weblog Application

usi ng System

usi ng System Col | ections. Generi c;
usi ng NHi ber nat e;

usi ng NHi bernate. Cf g;

usi ng NHi ber nat e. Tool . hbn2ddl ;

nanmespace Eg

{
public class Bl ogMain

{

private | SessionFactory _sessions;

public void Configure()

{
_sessions = new Configuration().Configure()
. Bui | dSessi onFactory();
}
public void Export Tabl es()
{
var cfg = new Configuration().Configure();
new SchemaExport(cfg). Create(true, true);
}
public Bl og CreateBlog(string nane)
{
var bl og = new Bl og
{
Name = nane,
Itens = new List<Blogltenr()
iE
using (var session = _sessions. OpenSession())
using (var tx = session.BeginTransaction())
{
sessi on. Save(bl og) ;
tx. Commit();
}
return bl og;
}
public Bl ogltem CreateBl ogltem(Bl og blog, string title, string text)
{
var item = new Bl ogltem
{
Title = title,
Text = text,
Bl og = bl og,
Dat eTi ne = Dat eTi me. Now
b
bl og. I tens. Add(item;
using (var session = _sessions. QpenSession())
using (var tx = session.BeginTransaction())
{
sessi on. Updat e(bl og) ;
tx. Commit();
}
return item
}
public Blogltem CreateBl oglten(long blogld, string title, string text)
{
var item = new Bl ogltem
{
Title =title,
Text = text,
Dat eTi me = Dat eTi me. Now
IE

NHibernate 5.1 189

Example: Weblog Application

publ

publ

publ

using (var session = _sessions. OpenSession())
using (var tx = session.BeginTransaction())

{

}

var bl og = session. Load<Bl og>(bl ogl d);
item Bl og = bl og;

bl og. I tenms. Add(item;

tx. Commit();

return item

ic void UpdateBl ogltem Blogltemitem string text)

item Text = text;

using (var session = _sessions. OpenSessi on())
using (var tx = session. Begi nTransaction())

{

session. Update(item;
tx. Commit();

ic void UpdateBl ogltem(long item d, string text)

using (var session = _sessions. OpenSessi on())
using (var tx = session. Begi nTransaction())

{

ic |List<object[]> ListAllBlIogNamesAndltenCounts(int max)

var item = session. Load<Bl ogltenr(iten d);
item Text = text;
tx. Commit();

| Li st<object[]> result;

using (var session = _sessions. OpenSessi on())
using (var tx = session.BeginTransaction())

{

}

var g = session. CreateQuery(
"sel ect blog.id, blog.Nanme, count (bl ogltem
"fromBlog as blog " +
"l eft outer join blog.ltems as blogltem" +
"group by blog. Nane, blog.id " +
"order by max(bl ogltem DateTi ne)"

IE

g. Set MaxResul t s(max) ;

result = g.List<object[]>();

tx. Commit();

return result;

i c Blog GetBl ogAndAl | Itens(l ong bl ogl d)

Bl og blog = null;

using (var session = _sessions. OpenSessi on())
using (var tx = session. Begi nTransaction())

{

var g = session. Creat eQuery(
"fromBlog as blog " +
"l eft outer join fetch blog.ltens " +
"where blog.id = : bl ogld"

)

g. Set Par anet er (" bl ogl d", bl ogld);

NHibernate 5.1

190

Example: Weblog Application

bl og = g. Uni queResul t <Bl 0g>();
tx. Commit();
}

return bl og;

}

public |List<object[]> ListBl ogsAndRecentl|tens()
{

| Li st<object[]> result = null;

using (var session = _sessions. OpenSessi on())
using (var tx = session.BeginTransaction())
{
var g = session. CreateQuery(
"fromBlog as blog " +
"inner join blog.ltems as blogltem" +
"where bl ogltem DateTine > : m nDate"

)
var date = DateTi me. Now. AddMont hs(-1);
g. Set Dat eTi me("m nDate", date);

result = q.List<object[]>();
tx. Commit();
}

return result;

It requires some configuration settings in web. confi g, such as:

<?xm version="1.0" encodi ng="utf-8" ?>
<confi guration>

<l--

Add this element -->

<configSecti ons>
<section

nanme="hi ber nat e- conf i gurati on"
type="NHi ber nat e. Cf g. Conf i gurati onSecti onHandl er

</ confi gSecti ons>

NHi ber nat e"

<l-- Add this elenent -->

<hi ber nat e- confi gurati on xm ns="urn: nhi ber nat e-confi guration-2.2">

<sessi on-factory>

<property nane="di al ect">NHi bernate. Di al ect. MsSql 2012Di al ect </ property>
<property nanme="connection.connection_string">
Server =l ocal host\ SQLEXPRESS; i niti al catal og=Eg; | ntegrated Security=True

</ property>

<mappi ng assenbl y="Eg" />
</ sessi on-factory>
</ hi ber nat e- confi gurati on>

<l-- Leave the other sections unchanged -->
<system web>

</ syst em web>
</ confi guration>

NHibernate 5.1

191

Chapter 24. Example: Various Mappings

This chapter shows off some more complex association mappings.

24.1. Employer/Employee

The following model of the relationship between Enpl oyer and Enpl oyee Uses an actual entity class (Enpl oy-
ment) to represent the association. This is done because there might be more than one period of employment for
the same two parties. Components are used to model monetary values and employee names.

(Employer Z) (Employment Z (Employee &
Class Class Class
' Employes
=l Properties 'ﬂﬁ Ernol =!I Properties =/ Properties
- mployer - o
g P “F EndDate g
P Name fT Id S TaxfileMumber
o T StartDate . A
I .
% HourlyRate ' Mame
(MonetaryAmount (% " Name &
Class Class
=!I Properties =/ Properties
ff Arnrnonuk ff FirstMarne
T Currency = Initial
A T LastMName

Here's a possible mapping document:

<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 2"
assenbl y="..." nanespace="...">

<cl ass nanme="Enpl oyer" tabl e="enpl oyers">
<id name="|d">
<gener ator class="sequence">
<par am nane="sequence" >enpl oyer _i d_seq</ par an>
</ gener at or >
</id>
<property name="Nanme"/>
</ cl ass>

<cl ass nane="Enpl oynent" tabl e="enpl oynent _peri ods" >

<id name="1d">
<gener at or cl ass="sequence">
<par am nane="sequence" >enpl oynent _i d_seq</ par an
</ gener at or >
</id>
<property nane="StartDate" colum="start_date"/>
<property nane="EndDate" col um="end_date"/>

<conponent name="Hourl yRate" class="MnetaryAnmount">
<property name="Anount">
<col umm nanme="hourly_rate" sql-type="NUMERI C(12, 2)"/>
</ property>
<property nane="Currency" |ength="12"/>

NHibernate 5.1 192

Example: Various Mappings

</ conponent >

<many-t o- one nane="Enpl oyer" col um="enpl oyer _i d" not-nul |l ="true"/>
<many-t o- one name="Enpl oyee" col um="enpl oyee_i d" not-nul |l ="true"/>
</cl ass>

<cl ass nane="Enpl oyee" tabl e="enpl oyees" >
<id name="1d">
<generator class="sequence">
<par am nane="sequence" >enpl oyee_i d_seq</ par an>
</ gener at or >
</id>
<property nane="Taxfil eNunber"/>
<conponent name="Nane" cl ass="Nane">
<property nane="FirstNane"/>
<property nane="Initial"/>
<property nane="Last Nane"/>
</ conponent >
</ cl ass>

</ hi ber nat e- mappi ng>

And here's the table schema generated by SchenmaExport .

create table enployers (
Id BIG NT not null,
Nane VARCHAR(255),
primary key (1d)

)

create tabl e enpl oynent _periods (
Id BIA NT not null,
hourly_rate NUMERI C(12, 2),
Currency VARCHAR(12),
enpl oyee_id BIG NT not null,
enpl oyer _id BI G NT not null,
end_date TI MESTAVP
start _date TI MESTAMP
primary key (1d)

)

create tabl e enpl oyees (
Id BIG@ NT not null,
Fi r st Nane VARCHAR(255),
Initial CHAR(1),
Last Nane VARCHAR(255),
Taxfi | eNunber VARCHAR(255),
primary key (1d)

)

alter table enpl oynent _peri ods

add constraint enpl oyment _peri odsFKO forei gn key (enployer_id) references enpl oyers
alter table enpl oynent_peri ods

add constrai nt enpl oyment _peri odsFK1 forei gn key (enployee_id) references enpl oyees
create sequence enployee id _seq
create sequence enpl oynent _i d_seq
create sequence enployer id_seq

24.2. Author/Work

Consider the following model of the rel ationships between wr k, Aut hor and Per son. We represent the relation-
ship between wor k and Aut hor as a many-to-many association. We choose to represent the relationship between
Aut hor and Per son as one-to-one association. Another possibility would be to have Aut hor extend Per son.

NHibernate 5.1 193

Example: Various Mappings

| work Z) | o works | Author 2 | Person &
Class — Class Class
“ authors % Person
=| Propertties =l Propetties =l Propetties
e 2 alias e
O Title o % Name
| song & | Book &
Class Class
=+ irark =+ wiark
=l Propetties =l Propetties
i‘*‘? Gente ﬁ:' Text
P Tempo .
The following mapping document correctly represents these rel ationships:
<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 2"
assenbl y="..." nanespace="...">
<cl ass nanme="Work" tabl e="works" discrim nator-val ue="W >
<id name="1d" colum="id" generator="native" />
<di scri m nator colum="type" type="character"/>
<property nane="Title"/>
<set name="Aut hors" tabl e="author_work" |azy="true">
<key>
<col um nane="work_i d" not-null="true"/>
</ key>
<many-t o- many cl ass="Aut hor">
<col um nane="aut hor _i d" not-null="true"/>
</ many-t o- many>
</set>
<subcl ass nanme="Book" di scri m nator-val ue="B">
<property nane="Text" colum="text" />
</ subcl ass>
<subcl ass nane="Song" di scri m nator-val ue="S">
<property nane="Tenpo" col um="tenpo" />
<property nane="Genre" col um="genre" />
</ subcl ass>
</ cl ass>
<cl ass nanme="Aut hor" tabl e="aut hors" >
<id name="1d" col um="id">
<I-- The Author nust have the sane identifier as the Person -->
<generator cl ass="assi gned"/>
</id>

<property nane="Alias" colum="alias" />
<one-t o-one nanme="Person" constrai ned="true"/>

<set name="Works" tabl e="author_work" inverse="true" |azy="true">
<key col um="aut hor _i d"/>
<many-t o- many cl ass="Work" col um="work_id"/>

</set>

</ cl ass>

NHibernate 5.1 194

Example: Various Mappings

<cl ass nane="Person" tabl e="persons">
<id name="1d" col um="id">
<generator class="native"/>
</id>
<property nane="Nanme" col um="nane" />
</ cl ass>

</ hi ber nat e- mappi ng>

There are four tables in this mapping. wor ks, aut hor s and per sons hold work, author and person data respect-
ively. aut hor _wor k is an association table linking authors to works. Here is the table schema, as generated by
SchemaExport .

create table works (
id BIA NT not null generated by default as identity,
tenpo FLQAT,
genre VARCHAR(255),
text | NTEGER
titl e VARCHAR(255),
type CHAR(1) not null,
primary key (id)
)

create table author_work (
author _id BIANT not null,
work_id BIG NT not null,
primary key (work_id, author_id)
)

create table authors (
id BIA NT not null generated by default as identity,
al i as VARCHAR(255) ,
primary key (id)

)

create table persons (
id BIGA NT not null generated by default as identity,
nanme VARCHAR(255),
primary key (id)

)

alter table authors

add constraint authorsFKO foreign key (id) references persons
al ter table author_work

add constrai nt author_workFKO foreign key (author_id) references authors
al ter tabl e author_work

add constraint author_workFK1 foreign key (work_id) references works

24.3. Customer/Order/Product

Now consider a model of the relationships between cust omer, O der and Li nel temand Product . There is a
one-to-many association between custormer and o der, but how should we represent order / Lineltem/
Product ? I've chosen to map Li nel tem as an association class representing the many-to-many association
between o der and Pr oduct . In NHibernate, thisis called a composite element.

NHibernate 5.1 195

Example: Various Mappings

]
¥
]

| Customer , " order | LineItem
lass T Customer Clazs - lass
o Lineltems
- Fir_ufnpertles ﬁ' orders = F:r?pertles = Fir_ufnpertles
| EE Date EE Quankity
5 Mame B -
% Product
" Product &
Class
= Propetties
=i
P SerialMumber

The mapping document:

<hi ber nat e- mappi ng xm ns="ur n: nhi ber nat e- mappi ng- 2. 2"
assenbl y="..." nanespace="...">

<cl ass nanme="Custoner" tabl e="custoners">
<id name="1d" colum="id" generator="native" />
<property nane="Nanme" col um="nane"/>
<set name="Orders" inverse="true" |azy="true">
<key col um="custoner_id"/>
<one-to-many class="Order"/>
</set>
</ cl ass>

<cl ass nanme="Order" tabl e="orders">
<id name="1d" colum="id" generator="native" />
<property nane="Date" col um="date"/>
<many-t o- one nane="Custoner" col um="custoner _id"/>

<list name="Lineltens" table="line_itens" |azy="true">
<key col umm="order_id"/>
<i ndex col um="1ine_nunber"/>

<conposi te-el emrent class="Linelteni>
<property nane="Quantity" colum="quantity"/>
<many-t o- one nanme="Product" col um="product _id"/>
</ conposi t e- el emrent >
</list>
</ cl ass>

<cl ass nane="Product" tabl e="products">
<id name="1d" col um="id">
<generator class="native"/>
</id>
<property nane="Seri al Nunber" col um="seri al _nunber" />
</ cl ass>

</ hi ber nat e- mappi ng>

custoners, orders, line_i tems and product s hold customer, order, order line item and product data respect-
ively. i ne_i t ems also acts as an association table linking orders with products.

create table custoners (
id BIA NT not null generated by default as identity,
name VARCHAR(255),
primary key (id)

)

create table orders (
id BIA NT not null generated by default as identity,

NHibernate 5.1 196

Example: Various Mappings

custoner _id Bl G NT,
dat e Tl MESTAWP
primary key (id)

)

create table line_itens (
|'i ne_nunber | NTEGER not nul |,
order _id BIGNT not null,
product _id Bl G NT,
quantity | NTEGER,
primary key (order_id, |ine_nunber)

)

create table products (
id BIANT not null generated by default as identity
seri al _nunber VARCHAR(255),
primary key (id)

)

alter table orders

add constraint ordersFKO foreign key (custoner_id) references custoners
alter table line_itens

add constraint line_itenmsFKO foreign key (product_id) references products
alter table line_itens

add constraint line_itensFKL foreign key (order_id) references orders

NHibernate 5.1 197

Chapter 25. Best Practices

Write fine-grained classes and map them using <conponent >.
Use an Addr ess class to encapsulate street, suburb, state, post code. This encourages code reuse and
simplifies refactoring.

Declare identifier properties on persistent classes.
NHibernate makes identifier properties optional. There are all sorts of reasons why you should use them.
We recommend that identifiers be 'synthetic' (generated, with no business meaning) and of a non-primitive
type. For maximum flexibility, use | nt 64 or Stri ng.

Place each class mapping in its own file.
Don't use a single monolithic mapping document. Map Eg. Foo in the file Eg/ Foo. hbm xm . This makes par-
ticularly good sense in ateam environment.

Embed mappingsin assemblies.
Place mapping files along with the classes they map and declare them as Enbedded ResourceSin Visua
Studio.

Consider externalising query strings.
This is a good practice if your queries call non-ANSI-standard SQL functions. Externalising the query
strings to mapping files will make the application more portable.

Use parameters.
Asin ADO.NET, always replace non-constant values by "?'. Never use string manipulation to bind a non-
constant value in aquery! Even better, consider using hamed parametersin queries.

Don't manage your own ADO.NET connections.
NHibernate lets the application manage ADO.NET connections. This approach should be considered a last-
resort. If you can't use the built-in connections providers, consider providing your own implementation of
NHi ber nat e. Connecti on. | Connecti onProvi der.

Consider using a custom type.
Suppose you have atype, say from some library, that needs to be persisted but doesn't provide the accessors
needed to map it as a component. Y ou should consider implementing NHi ber nat e. User Types. | User Type.
This approach frees the application code from implementing transformations to / from an NHibernate type.

Use hand-coded ADO.NET in bottlenecks.
In performance-critical areas of the system, some kinds of operations (eg. mass update / delete) might bene-
fit from direct ADO.NET. But please, wait until you know something is a bottleneck. And don't assume that
direct ADO.NET is necessarily faster. If need to use direct ADO.NET, it might be worth opening a
NHibernate | Sessi on and using that SQL connection. That way you can still use the same transaction
strategy and underlying connection provider.

Understand | Ssessi on flushing.
From time to time the | Session synchronizes its persistent state with the database. Performance will be af-
fected if this process occurs too often. You may sometimes minimize unnecessary flushing by disabling
automatic flushing or even by changing the order of queries and other operations within a particular trans-
action.

In athreetiered architecture, consider using SaveOr Updat e() .
When using a distributed architecture, you could pass persistent objects loaded in the middle tier to and
from the user interface tier. Use a new session to service each request. Use | Sessi on. Updat e() Or | Ses-

NHibernate 5.1 198

Best Practices

si on. SaveOr Updat e() to update the persistent state of an object.

In atwo tiered architecture, consider using session disconnection.
Database Transactions have to be as short as possible for best scalability. However, it is often necessary to
implement long running Application Transactions, a single unit-of-work from the point of view of a user.
This Application Transaction might span several client requests and response cycles. Either use Detached
Objects or, in two tiered architectures, simply disconnect the NHibernate Session from the ADO.NET con-
nection and reconnect it for each subsequent request. Never use a single Session for more than one Applic-
ation Transaction use-case, otherwise, you will run into stale data.

Don't treat exceptions as recoverable.
This is more of a necessary practice than a "best" practice. When an exception occurs, roll back the
I Transact i on and close the I Sessi on. If you don't, NHibernate can't guarantee that in-memory state accur-
ately represents persistent state. As a special case of this, do not use I Sessi on. Load() to determine if an
instance with the given identifier exists on the database; use Get () or aquery instead.

Prefer lazy fetching for associations.
Use eager (outer-join) fetching sparingly. Use proxies and/or lazy collections for most associations to
classes that are not cached in the second-level cache. For associations to cached classes, where there is a
high probability of a cache hit, explicitly disable eager fetching using f et ch="sel ect ". When an outer-join
fetch is appropriate to a particular use case, use aquery withaleft join fetch.

Consider abstracting your business logic from NHibernate.
Hide (NHibernate) data-access code behind an interface. Combine the DAO and Thread Local Session pat-
terns. You can even have some classes persisted by hand-coded ADO.NET, associated to NHibernate via
an | User Type. (This advice is intended for "sufficiently large" applications; it is not appropriate for an ap-
plication with five tables!)

Implement Equal s() and Get HashCode() uSing aunique business key.

If you compare objects outside of the ISession scope, you have to implement Equal s() and
Get HashCode() . Inside the 1Session scope, object identity is guaranteed. If you implement these methods,
never ever use the database identifier! A transient object doesn't have an identifier value and NHibernate
would assign a value when the object is saved. If the object isin an 1Set while being saved, the hash code
changes, breaking the contract. To implement Equal s() and Get HashCode(), USe a unique business key,
that is, compare a unique combination of class properties. Remember that this key has to be stable and
unique only while the object isin an 1Set, not for the whole lifetime (not as stable as a database primary
key). Never use collections in the Equal s() comparison (lazy loading) and be careful with other associated
classes that might be proxied.

Don't use exotic association mappings.
Good use-cases for areal many-to-many associations are rare. Most of the time you need additional inform-
ation stored in the "link table". In this case, it is much better to use two one-to-many associations to an in-
termediate link class. In fact, we think that most associations are one-to-many and many-to-one, you should
be careful when using any other association style and ask yourself if it isreally necessary.

NHibernate 5.1 199

Part I. NHibernateContrib Documentation

Preface

The NHibernateContrib is various programs contributed to NHibernate by members of the NHibernate Team or
by the end users. The projectsin here are not considered core pieces of NHibernate but they extend it in a use-
ful way.

NHibernate 5.1 cci

Chapter 26. NHibernate.Caches

What is NHiber nate.Caches?

NHiber nate.Caches namespace contains several second-level cache providersfor NHibernate. A cacheis
a place where entities are kept after being loaded from the database; once cached, they can be retrieved without
going to the database. This means that they are faster to (re)load.

An NHibernate session has an internal (first-level) cache where it keeps its entities. There is no sharing between
these caches - a first-level cache belongs to a given session and is destroyed with it. NHibernate provides a
second-level cache system; it works at the session factory level. A second-level cache is shared by all sessions
created by the same session factory.

An important point is that the second-level cache does not cache instances of the object type being cached; in-
stead it caches the individual values of the properties of that object. This provides two benefits. One, NHibern-
ate doesn't have to worry that your client code will manipulate the objects in away that will disrupt the cache.
Two, the relationships and associations do not become stale, and are easy to keep up-to-date because they are
simply identifiers. The cache is not a tree of objects but rather amap of arrays.

With the session-per-request model, a high number of sessions can concurrently access the same entity without
hitting the database each time; hence the performance gain.

Depending on the chosen cache provider, the second level cache may be actually shared between different ses-
sion factories. If you need to avoid this for some session factories, configure each of them with a different
cache. r egi on_prefi x. See Section 3.5, “Optional configuration properties’.

Several cache providers have been contributed by NHibernate users:

NHi ber nat e. Caches. Preval ence
Uses Barboo. Preval ence as the cache provider. Open the file Banboo. Preval ence. | i cense. t xt for more
information about its license; you can also visit its website [http://bbooprevalence.sourceforge.net/]. This
provider is available for the .Net Framework only. Also see Section 26.2, “Prevalence Cache Configura-
tion”.

NHi ber nat e. Caches. SysCache
Uses Syst em Web. Cachi ng. Cache as the cache provider. This means that you can rely on ASP.NET cach-
ing feature to understand how it works. For more information, read (on the MSDN): Caching Application
Data [https://msdn.microsoft.com/en-ug/library/6hbbsfk6.aspx]. This provider is available for the .Net
Framework only. Also see Section 26.3, “ SysCache Configuration”.

NHi ber nat e. Caches. SysCache?2
Similar to NHi ber nat e. Caches. SysCache, uses ASP.NET cache. This provider also supports SQL depend-
ency-based expiration, meaning that it is possible to configure certain cache regions to automatically expire
when the relevant data in the database changes.

SysCache2 requires Microsoft SQL Server 2000 or higher. This provider is available for the .Net Frame-
work only.

See Section 26.4, “ SysCache2 Configuration”.

NH ber nat e. Caches. Enyi mventached
Uses Menctached. See memcached homepage [https.//memcached.org/] for more information on Mem-
cached. This provider is available for the .Net Framework only. Also see Section 26.5, “EnyimMemcached

NHibernate 5.1 202

http://bbooprevalence.sourceforge.net/
https://msdn.microsoft.com/en-us/library/6hbbsfk6.aspx
https://msdn.microsoft.com/en-us/library/6hbbsfk6.aspx
https://memcached.org/

NHibernate.Caches

Configuration”.

NCache provider for NH bernate
Uses Ncache. NCache is a commercial distributed caching system with a provider for NHibernate. The
NCache Express version is free for use, see NCache Express homepage
[http://iwww.al achi soft.com/ncache/] for more information.

NHi ber nat e. Caches. Rt Menor yCache
Uses Syst em Runt i me. Cachi ng. Menor yCache. Def aul t asthe cache provider. This provider is available for
the .Net Framework only. See Section 26.6, “ RtMemoryCache Configuration”.

NHi ber nat e. Caches. Cor eMenor yCache
Uses M crosof t . Ext ensi ons. Cachi ng. Menory. Menor yCache as the cache provider. This provider is avail-
able as a.Net Standard NuGet package. See Section 26.7, “ CoreMemoryCache Configuration”.

NHi ber nat e. Caches. Cor eDi stri but edCache
Uses M crosof t . Ext ensi ons. Cachi ng. Abstractions. | Di stri but edCache implementations as the cache
provider. The implementation has to be provided through an | Di stri but edCacheFact ory. Distributed
cache factories for Mencached, Redi s, Sql Server and Menory caches are available through their own pack-
age, prefixed by NH ber nat e. Caches. Cor eDi stri but edCache. .

This provider is available as a .Net Standard NuGet package. See Section 26.8, “CoreDistributedCache
Configuration”.

26.1. How to use a cache?

Here are the steps to follow to enable the second-level cache in NHibernate:

¢ Choose the cache provider you want to use and copy its assembly in your assemblies directory. (For ex-
ample, NHi ber nat e. Caches. Preval ence. dl | Of NHi ber nat e. Caches. SysCache. dI | .)

¢ Totell NHibernate which cache provider to use, add in your NHibernate configuration file (can be Your As-
senbl y. exe. confi g Of web. configora.cfg.xm file):

<property nanme="cache. provi der_cl ass" >xxx</ pr operty>(1)
<property nane="cache. def aul t _expiration">120</property>(2)
<property nanme="cache. use_slidi ng_expiration">true</ property>(3)

(1) "XxX" is the assembly-qualified class name of a class implementing | CachePr ovi der, €g. "NHi ber n-
at e. Caches. SysCache. SysCacheProvi der, NHi ber nat e. Caches. SysCache".

(2) Theexpiration vaueisthe number of seconds you wish to cache each entry (here two minutes). Not
al providers support this setting, it may be ignored. Check their respective documentation.

(3) Theuse_sliding_expiration value is whether you wish to use a diding expiration or not. Defaults
tofal se. Not all providers support this setting, it may be ignored. Check their respective documenta
tion.

e Add <cache usage="read-write|nonstrict-read-wite|read-only"/> (just after <cl ass>) in the map-
ping of the entities you want to cache. It also works for collections (bag, list, map, set, ...).

Be car€ful.

NHibernate 5.1 203

http://www.alachisoft.com/ncache/

NHibernate.Caches

* Most caches are never aware of changes made to the persistent store by another process (though they may
be configured to regularly expire cached data). As the caches are created at the session factory level, they
are destroyed with the SessionFactory instance; so you must keep them alive as long as you need them.

e The second level cache requires the use of transactions, be it through transaction scopes or NHibernate
transactions. Interacting with the data store without an explicit transaction is discouraged, and will not al-
low the second level cache to work as intended.

« To avoid issues with composite ids and some cache providers, ToSt ri ng() needs to be overridden on com-
posite id classes. It should yield an unique string representing the id. If the composite id is mapped as a
component, overriding the component ToStri ng() is enough. See Section 7.4, “Components as composite
identifiers’.

See aso Section 20.2, “The Second Level Cache”.

26.2. Prevalence Cache Configuration

There is only one configurable parameter: preval enceBase. Thisis the directory on the file system where the
Prevalence engine will save data. It can be relative to the current directory or afull path. If the directory doesn't
exist, it will be created.

The preval enceBase Setting can only be set programmatically through on the NHibernate configuration object,
by example with Conf i gur ati on. Set Property.

26.3. SysCache Configuration

SysCache relies on Syst em Web. Cachi ng. Cache for the underlying implementation. The following NHibernate
configuration settings are available:

cache. defaul t _expiration
Number of seconds to wait before expiring each item. Defaults to 300. It can also be set programmatically
on the NHibernate configuration object under the name expi rati on, which then takes precedence over
cache. defaul t _expiration.

cache. use_slidi ng_expiration
Should the expiration be dliding? A diding expiration isreinitialized at each get. Defaultsto f al se.

priority
A numeric cost of expiring each item, where 1isalow cost, 5 isthe highest, and 3 is normal. Only values 1
through 6 are valid. 6 is a special value corresponding to Not Rerovabl e. This setting can only be set pro-
grammatically through on the NHibernate configuration object, by example with Configura-
tion. Set Property.

SysCache has a config file section handler to allow configuring different expirations and priorities for different

regions. Hereis an example:

Example 26.1.

<?xm version="1.0" encodi ng="utf-8" ?>
<confi guration>
<confi gSecti ons>

NHibernate 5.1 204

NHibernate.Caches

<section nanme="syscache"
t ype="NHi ber nat e. Caches. SysCache. SysCacheSect i onHandl er, NHi ber nat e. Caches. SysCache" />
</ confi gSections>

<syscache>
<cache region="foo" expiration="500" priority="4" />
<cache regi on="bar" expiration="300" priority="3" sliding="true" />
</ syscache>
</ confi guration>

26.4. SysCache2 Configuration

SysCache2 can use SglCacheDependencies to invalidate cache regions when data in an underlying SQL Server
table or query changes. Query dependencies are only available for SQL Server 2005 or higher. To use the cache
provider, the application must be setup and configured to support SQL natifications as described in the MSDN
documentation.

The following NHibernate configuration settings are available:

cache. defaul t _expiration
Number of seconds to wait before expiring each item. Defaults to 300. It can also be set programmatically
on the NHibernate configuration object under the name expi rati on, which then takes precedence over
cache. defaul t _expiration.

cache. use_slidi ng_expiration
Should the expiration be dliding? A diding expiration isreinitialized at each get. Defaultsto f al se.

To configure cache regions with SglCacheDependencies asyscache2 config section must be defined in the ap-
plication's configuration file. See the sample below.

Example 26.2.

<configSecti ons>
<section nane="syscache2"
type="NHi ber nat e. Caches. SysCache2. SysCacheSecti on, NHi bernate. Caches. SysCache2"/ >
</ confi gSecti ons>

26.4.1. Table-based Dependency

A table-based dependency will monitor the data in a database table for changes. Table-based dependencies are
generally used for a SQL Server 2000 database but will work with SQL Server 2005 or superior as well. Before
you can use SQL Server cache invalidation with table based dependencies, you heed to enable notifications for
the database. This task is performed with the aspnet_regsql command. With table-based notifications, the ap-
plication will poll the database for changes at a predefined interval. A cache region will not be invalidated im-
mediately when data in the table changes. The cache will be invalidated the next time the application polls the
database for changes.

To configure the data in a cache region to be invalidated when data in an underlying table is changed, a cache
region must be configured in the application's configuration file. See the sample below.

NHibernate 5.1 205

NHibernate.Caches

Example 26.3.

<syscache2>
<cacheRegi on nane="Product ">
<dependenci es>
<t abl es>
<add name="price"
dat abaseEnt r yNane="Def aul t "
t abl eNanme="Vi deoTitle" />
</ tabl es>
</ dependenci es>
</ cacheRegi on>
</ syscache2>

Table-based Dependency Configuration Properties

namne
Unique name for the dependency

t abl eName
The name of the database table that the dependency is associated with. The table must be enabled for noti-
fication support with the AspNet _Sql CacheRegi st er Tabl eSt or edPr ocedur e.

dat abaseEnt r yName
The name of a database defined in the dat abases element for sql CacheDependency for caching (ASP.NET
Settings Schema) element of the application'swb. confi g file.

26.4.2. Command-Based Dependencies

A command-based dependency will use a SQL command to identify records to monitor for data changes. Com-
mand-based dependencies work only with SQL Server 2005.

Before you can use SQL Server cache invalidation with command-based dependencies, you need to enable the
Service Broker for query notifications. The application must also start the listener for receiving change notifica-
tions from SQL Server. With command based notifications, SQL Server will notify the application when the
data of arecord returned in the results of a SQL query has changed. Note that a change will be indicated if the
datain any of the columns of arecord change, not just the columns returned by a query. The query isaway to
limit the number of records monitored for changes, not the columns. As soon as data in one of the records is
modified, the datain the cache region will be invalidated immediately.

To configure the data in a cache region to be invalidated based on a SQL command, a cache region must be
configured in the application's configuration file. See the samples below.

Example 26.4. Stored Procedure

<cacheRegi on nanme="Product" priority="H gh" >
<dependenci es>
<conmands>
<add nanme="pri ce"
comand="Act i vePr oduct sSt or edPr ocedur e"
i sSt oredPr ocedure="true"/>
</ commands>
</ dependenci es>
</ cacheRegi on>

NHibernate 5.1 206

NHibernate.Caches

Example 26.5. SELECT Statement

<cacheRegi on name="Product™" priority="Hi gh">
<dependenci es>
<conmands>
<add nanme="pri ce"
command="Sel ect VideoTitleld from dbo. Vi deoTitle where Active = 1"
connecti onNane="def aul t"

connectionStringProvi der Type="NHi ber nat e. Caches. SysCache2. Conf i gConnecti onStri ngProvi der

</ commands>
</ dependenci es>
</ cacheRegi on>

Command Configuration Properties

nane
Unique name for the dependency

conmmand (required)
SQL command that returns results which should be monitored for data changes

i sSt or edPr ocedur e (optional)
Indicates if command is a stored procedure. The default ist al se.

connect i onName (optional)
The name of the connection in the applications configuration file to use for registering the cache depend-
ency for change notifications. If no value is supplied for connecti onNane Of connecti onStri ngProvi der -
Type, the connection properties from the NHibernate configuration will be used.

connect i onStri ngProvi der Type (optional)
| Connect i onStringProvi der to use for retrieving the connection string to use for registering the cache de-
pendency for change notifications. If no value is supplied for connecti onNane, the unnamed connection
supplied by the provider will be used.

26.4.3. Aggregate Dependencies

Multiple cache dependencies can be specified. If any of the dependencies triggers a change notification, the
datain the cache region will be invalidated. See the samples below.

Example 26.6. M ultiple commands

<cacheRegi on name="Product" >
<dependenci es>
<commands>
<add name="pri ce"
comand="Act i vePr oduct sSt or edPr ocedur e"
i sSt oredProcedure="true"/>
<add nane="quantity"
conmand="Sel ect quantityAvail abl e from dbo. Vi deocAvail ability"/>
</ conmands>
</ dependenci es>
</ cacheRegi on>

NHibernate 5.1 207

NHi |

NHibernate.Caches

Example 26.7. Mixed

<cacheRegi on nane="Product">
<dependenci es>
<conmands>
<add nanme="pri ce"
conmand="Act i vePr oduct sSt or edPr ocedur e"
i sSt oredProcedure="true"/>
</ conmands>
<t abl es>
<add nanme="quantity"
dat abaseEnt r yNane="Def aul t "
tabl eNane=" Vi deoAvailability" />
</t abl es>
</ dependenci es>
</ cacheRegi on>

26.4.4. Additional Settings

In addition to data dependencies for the cache regions, time based expiration policies can be specified for each
item added to the cache. Time based expiration policies will not invalidate the data dependencies for the whole
cache region, but serve as a way to remove items from the cache after they have been in the cache for a spe-
cified amount of time. See the samples below.

Example 26.8. Relative Expiration

<cacheRegi on nane="Product" rel ativeExpiration="300" priority="H gh" useSlidi ngExpiration="true" />

Example 26.9. Time of Day Expiration

<cacheRegi on nane="Product" tinmeC DayExpiration="2:00: 00" priority="Hi gh" />

Additional Configuration Properties

rel ati veExpiration
Number of seconds that an individual item will exist in the cache before being removed. Defaults to 300 if
neither rel ati veExpiration nor ti meCf DayExpiration are defined, and if no expiration settings are
defined in NHibernate configuration.

useSl i di ngExpiration
Should the expiration be diding? A diding expiration is reinitialized at each get. Defaults to f al se if not
defined in NHibernate configuration.

ti meOr DayExpiration
24 hour based time of day that an item will exist in the cache until. 12am is specified as 00:00:00; 10pm is
specified as 22:00:00. Only valid if relativeExpiration is not specified. Time of Day Expiration is useful for
scenarios where items should be expired from the cache after adaily process completes.

priority

NHibernate 5.1 208

NHibernate.Caches

Syst em Web. Cachi ng. Cachel tenPri ori ty that identifies the relative priority of items stored in the cache.

26.5. EnyimMemcached Configuration

Its configuration relies on the EnyimMemcached library own configuration, through its enyi m com nencached
configuration section. See project site [https://github.com/enyim/EnyimMemcached].

26.6. RtMemoryCache Configuration

RtMemoryCache relies on System Runt i me. Cachi ng. MenoryCache for the underlying implementation. The
following NHibernate configuration settings are available:

cache. defaul t _expiration
Number of seconds to wait before expiring each item. Defaults to 300. It can aso be set programmatically
on the NHibernate configuration object under the name expi rat i on, which then takes precedence over
cache. defaul t _expirati on.

cache. use_sliding_expiration
Should the expiration be sliding? A sliding expiration is reinitialized at each get. Defaultstof al se.

RtMemoryCache has a config file section handler to alow configuring different expirations for different re-
gions. Hereis an example:

Example 26.10.

<?xm version="1.0" encodi ng="utf-8" ?>
<confi guration>
<confi gSecti ons>
<section name="rt menorycache"
type="NHi ber nat e. Caches. Rt Menor yCache. Rt Menor yCacheSect i onHandl er, NH ber nat e. Caches. Rt Menor yCacl
</ confi gSecti ons>

<rt menorycache>
<cache regi on="fo00" expiration="500" />
<cache regi on="bar" expiration="300" sliding="true" />
</rtmenorycache>
</ confi guration>

26.7. CoreMemoryCache Configuration

CoreMemoryCache relieson M cr osof t . Ext ensi ons. Cachi ng. Menory. Menor yCache for the underlying imple-
mentation. The following NHibernate configuration settings are available:

cache. defaul t _expiration
Number of seconds to wait before expiring each item. Defaults to 300. It can also be set programmatically
on the NHibernate configuration object under the name expi rati on, which then takes precedence over
cache. def aul t _expiration.

cache. use_slidi ng_expiration
Should the expiration be dliding? A diding expiration is reinitialized at each get. Defaultsto f al se.

NHibernate 5.1 209

https://github.com/enyim/EnyimMemcached

NHibernate.Caches

CoreMemoryCache has a config file section handler to allow configuring different expirations for different re-
gions, and configuring the Menor yCache expiration scan frequency. Here is an example:

Example 26.11.

<?xm version="1.0" encodi ng="utf-8" ?>
<configuration>
<confi gSecti ons>
<section nanme="cor enenorycache"
t ype="NHi ber nat e. Caches. Cor eMenor yCache. Cor eMenor yCacheSect i onHandl er, NHi ber nat e. Caches. Cor eMem
/>
</ confi gSections>

<cor enenorycache expiration-scan-frequency="00: 05: 00" >
<cache regi on="fo00" expiration="500" />
<cache regi on="bar" expiration="300" sliding="true" />
</ cor emenor ycache>
</ configuration>

26.8. CoreDistributedCache Configuration

CoreDistributedCache relies on M crosof t . Ext ensi ons. Cachi ng. Abstracti ons. | Di st ri but edCache imple-
mentations. The implementation has to be provided through an 1 Di st ri but edCacheFact ory, either supplied
through configuration or programmatically by affecting Cor eDi st ri but edCachePr ovi der. CacheFact ory be-
fore building a session factory. The following NHibernate configuration settings are available:

cache. defaul t _expiration
Number of seconds to wait before expiring each item. Defaults to 300. It can aso be set programmatically
on the NHibernate configuration object under the name expi rati on, which then takes precedence over
cache. def aul t _expirati on.

cache. use_sliding_expiration
Should the expiration be dliding? A diding expiration isreinitialized at each get. Defaultsto f al se.

CoreDistributedCache has a config file section handler to alow configuring different expirations for different
regions, configuring the |1 Di st ri but edCacheFact ory to use, and configuring additional properties specific to
the chosen | Di st ri but edCache implementation. Here is an example:

Example 26.12.

<?xm version="1.0" encodi ng="utf-8" ?>
<configuration>
<confi gSecti ons>
<section nane="coredi stri butedcache"
t ype="NHi ber nat e. Caches. Cor eDi st ri but edCache. Cor eDi stri but edCacheSecti onHandl er
NH ber nat e. Caches. Cor eDi st ri but edCache" />
</ confi gSecti ons>

<cor edi stri but edcache
factory-cl ass="NH bernat e. Caches. CoreDi stri but edCache. Menory. Menor yFact ory,
NHi ber nat e. Caches. CoreDi st ri but edCache. Menory" >
<properties>
<property nanme="expiration-scan-frequency">00: 10: 00</ pr operty>
<property name="size-limt">1048576</ property>
</ properties>
<cache regi on="fo00" expiration="500" sliding="true" />

NHibernate 5.1 210

NHibernate.Caches

<cache regi on="noExplicitExpiration" sliding="true" />
</ coredi stributedcache>
</ confi guration>

CoreDistributedCache does not support NHi ber nat e. Cache. | Cache. d ear . Clearing the NHibernate cache has
no effects with CoreDistributedCache.

26.8.1. Memcached distributed cache factory

NHi ber nat e. Caches. Cor eDi stri but edCache. Mencached provides a Redis distributed cache factory. This fact-
ory yields a Enyi m Cachi ng. Mentachedd i ent from Enyi mventachedCor e. For using it, reference the cache
factory package and set the factory-cl ass attribute of the coredi stri but edcache configuration section to
NHi ber nat e. Caches. CoreDi st ri but edCache. Mentached. MentachedFact ory, NH ber n-
ate. Caches. CoreDi stri but edCache. Mentached.

Memcached does not support diding expirations. cache. use_sl i di ng_expi rati on Setting or sl i di ng region
setting do not have any effect with Memcached.

The following additional properties can be configured:

configuration
The JSON configuration of Enyi mMvencachedCor e, see its project website
[https://github.com/cnblogs/EnyimMemcachedCore]. It has to be structured like the value part of the " en-
yi mvencached" property inan appsettings.j son file.

Example 26.13.

{

"Servers": [

"Address": "l ocal host",
"Port": 11211

}
]
}

26.8.2. Redis distributed cache factory

NHi ber nat e. Caches. Cor eDi st ri but edCache. Redi s provides a Redis distributed cache factory. This factory
yields a M crosof t . Ext ensi ons. Cachi ng. Redi s. Redi sCache. For using it, reference the cache factory pack-
age and set the factory-cl ass attribute of the coredi stribut edcache configuration section to NHi ber n-
at e. Caches. Cor eDi stri but edCache. Redi s. Redi sFactory, NHi ber n-
ate. Caches. Cor eDi stri but edCache. Redi s.

The following additional properties can be configured:

configuration
Its value will be used to set the Conf i gur at i on property of the Redi sCache options (Redi sCachept i ons).

i nst ance- name
Its value will be used to set the | nst anceName property of the Redi sCache options (Redi sCachept i ons).

NHibernate 5.1 211

https://github.com/cnblogs/EnyimMemcachedCore

NHibernate.Caches

26.8.3. SQL Server distributed cache factory

NHi ber nat e. Caches. Cor eDi st ri but edCache. Sql Server provides a SQL Server distributed cache factory.
Thisfactory yields aM crosof t . Ext ensi ons. Cachi ng. Sgl Ser ver . Sql Ser ver Cache. For using it, reference the
cache factory package and set the f act ory- ¢l ass attribute of the cor edi st ri but edcache configuration section
to NHi ber nat e. Caches. CoreDi st ri but edCache. Sgl Server. Sqgl Server Factory, NHi ber n-
at e. Caches. CorebDi stri but edCache. Sql Server.

The following additional properties can be configured:

connection-string
Its value will be used to set the Connecti onString property of the Sql Server Cache options (Sql Ser ver -
CacheOpt i ons).

schenma- nanme
Its value will be used to set the SchemaNane property of the Sql Server Cache options (Sgl Server -
Cachept i ons).

t abl e- nane
Its value will be used to set the Tabl eName property of the Sql ServerCache options (Sgl Server -
CacheQpt i ons).

expired-itens-del etion-interval
Its value will be used to set the Expi redl t ensDel eti onl nterval property of the Sql Server Cache options
(sql Server CacheOpti ons). It can be provided either as an integer being a number of minutes or as a
Ti meSpan string representation.

26.8.4. Memory distributed cache factory

NHi ber nat e. Caches. Cor eDi st ri but edCache. Menory provides a memory "distributed” cache factory. This
factory yields a M crosof t. Ext ensi ons. Cachi ng. Menory. Menror yDi st ri but edCache. For using it, reference
the cache factory package and set the factory-cl ass attribute of the coredi stri but edcache configuration
section to NHi ber nat e. Caches. CoreDi stri but edCache. Menory. MenoryFact ory, NHi ber n-
at e. Caches. Cor eDi stri but edCache. Menory.

Asimplied by its name, this cache is not actually distributed. It is meant for testing purpose. For other usages,
consider using another memory cache provider, like Cor eMenor yCache. Due to the distributed cache implement-
ation, using the Menor yDi st ri but edCache has some drawbacks compared to most other memory cache pro-
viders: it will serialize cached objects, incurring some overhead; it does not support clearing the cache. But due
to the serialization of cached objects, it is able of computing its consumed memory size, thus the availability of
the si zeLi mi t option.

The following additional properties can be configured:

expiration-scan-frequency
Its value will be used to set the Expi rati onScanFrequency property of the Menor yDi st ri but edCache Op-
tions (MenoryDi stri but edCacheQptions). It can be provided either as an integer being a number of
minutes or as aTi meSpan String representation.

size-linmt
Its value will be used to set the si zeLi mit property of the MenoryDi st ri but edCache options (Menor yDi s-
tri but edCacheOpt i ons). Its value is an integer, representing the maximal bytes count to be stored in the

NHibernate 5.1 212

NHibernate.Caches

cache.

NHibernate 5.1 213

Chapter 27. NHibernate.Mapping.Attributes

What isNHibernate. M apping.Attributes?

NHibernate M apping.Attributes is an add-in for NHibernate [http://nhibernate.info/] contributed by
Pierre Henri Kuaté (aka KPixel); the former implementation was made by John Morris. NHibernate re-
quire mapping streams to bind your domain model to your database. Usually, they are written (and maintai ned)

in separated hbm.xml files.

With NHibernate.Mapping.Attributes, you can use .NET attributes to decorate your entities and these attributes
will be used to generate these mapping .hbm.xml (as files or streams). So you will no longer have to bother

with these nasty xml files;;).

Content of thislibrary.

NHiber nate.Mapping.Attributes: That the only project you need (as end-user)
Test: aworking sample using attributes and HomSerializer as NUnit TestFixture
Generator: The program used to generate attributes and HomWriter

Refly [http://mbunit.tigris.org/]: Thanks to Jonathan de Halleux [http://www.dotnetwiki.org/] for this lib-
rary which make it so easy to generate code

| mportant

This library is generated using the file /
src/ NHi ber nat e. Mappi ng. At tri but es/ nhi ber nat e- mappi ng. xsd (which is embedded in the as
sembly to be able to validate generated XML streams). As this file can change at each new release of
NHibernate, you should regenerate it before using it with a different version (open the Generator solu-
tion, compile and run the Generator project). But, no test has been done with versions prior to 0.8.

27.1. What's new?

NHiber nate. introduces many new features, improvements and changes:

It is possible to import classes by simply decorating them with [I nport] class |nportedd assl {}.
Note that you must use HonSeri al i zer. Seri al i ze(assenbl y); The <i mport/> mapping will be added
before the classes mapping. If you prefer to keep these imports in the class using them, you can specify
them all ontheclass: [| nport (O assType=t ypeof (| nportedd ass1))] class Query {}.

[RawXnl At t ri but e] isanew attribute allowing to insert xml as-isin the mapping. This feature can be very
useful to do complex mapping (eg: components). It may also be used to quickly move the mapping from
xml files to attributes. Usage: [Rawxm (Aft er =t ypeof (Conponent Attribute), Content="<conponent
name="...">...</conponent>")]. After tells after which kind of mapping the xml should be inserted
(generally, it is the type of the mapping you are inserting); it is optional (in which case the xml is inserted
on the top of the mapping). Note: At the moment, all raw xmls are prefixed by a<! - - - - > (in the generated
stream); thisis a known side-effect.

[AttributeldentifierAttribute] iSa new attribute allowing to provide the value of a defined "place

NHibernate 5.1 214

http://nhibernate.info/
http://mbunit.tigris.org/
http://www.dotnetwiki.org/

NHibernate.Mapping.Attributes

holder". Eg:

public class Base {

[1d(..., Colum="{{Id.Colum}}")]
[Attributeldentifier(Name="1d. Colum", Value="I1D")] // Default value
public int Id { ... }

}
[Attributeldentifier(Nanme="1d. Colum", Value="SUB |D")]

[A ass] public class MappedSubCd ass : Base { }
The idea is that, when you have a mapping which is shared by many subclasses but which has minor dif-
ferences (like different column names), you can put the mapping in the base class with place holders on
these fields and give their values in subclasses. Note that this is possible for any mapping field taking a
string (column, name, type, access, etc.). And, instead of val ue, you can use val ueType Of Val ueChj ect
(if you use an enum, you can control its formatting with val uej ect).

The "place holder" is defined like this: {{xxx}}. If you don't want to use these double curly brackets, you
can change them using the properties st ar t Quot e and EndQuot e of the class Homw i ter .

4. It is possible to register patterns (using Regular Expressions) to automatically transform fully qualified
names of properties types into something ese Eg: HbnSer i al -
i zer. Defaul t. HmA it er. Pat t er ns. Add(@ Nanespace. (\ S+), Assenbly", "$1"); will map all proper-
ties with a not-qualified type name.

5. Two methods have been added to alow writing: cfg. AddlnputStream(HbnSeri al -
i zer.Default. Serialize(typeof (XXX))) and cf g. Addl nput St r ean(HonBeri al -
i zer. Defaul t. Serial i ze(typeof (XXX). Assenbly)). S0 it is no longer required to create a MemoryS-
tream for these ssimple cases.

6. Two Wi teUser DefinedContent () methods have been added to Homw i t er . They improve the extensibil-
ity of thislibrary; it isnow very easy to create a .NET attribute and integrate it in the mapping.

7. Attributes[(Jcs) Cache], [Di scriminator] and[Key] can be specified at class-level.
8. Interfaces can be mapped (just like classes and structs).

9. A notable "bug" fix is the re-ordering of (joined-)subclasses; This operation may be required when a sub-
class extends another subclass. In this case, the extended class mapping must come before the extending
class mapping. Note that the re-ordering takes place only for "top-level" classes (that is not nested in other
mapped classes). Anyway, it is quite unusual to put a interdependent mapped subclasses in a mapped
class.

10. There are also many other little changes; refer to the release notes for more details.

27.2. How to use it?

The end-user class is NHi ber nat e. Mappi ng. Attri but es. HbnSeri al i zer. This class serialize your domain
model to mapping streams. You can either serialize classes one by one or an assembly. Look at NHi ber n-
at e. Mappi ng. Attri but es. Test project for aworking sample.

Thefirst step is to decorate your entities with attributes; you can use: [O ass], [Subcl ass] , [Joi nedSubcl ass]
or [Component] . Then, you decorate your members (fields/properties); they can take as many attributes as re-
quired by your mapping. Eg:

NHibernate 5.1 215

NHibernate.Mapping.Attributes

[NHi ber nat e. Mappi ng. Attri butes. O ass]
public class Exanple

{
[NH ber nat e. Mappi ng. Attri but es. Property]

public string Nane;

After this step, you use NHi ber nat e. Mappi ng. At tri but es. HonSeri al i zer: (here, we use Def aul t which isan
instance you can use if you don't need/want to create it yourself).

NH ber nate. Cf g. Confi gurati on cfg = new NH bernate. Cf g. Configuration();

cfg. Configure();

/'l Enabl e validation (optional)

NHi ber nat e. Mappi ng. Attri butes. HonSeri al i zer. Default. Validate = true;

Il Here, we serialize all decorated classes (but you can also do it class by class)

cf g. Addl nput St rean(NHi ber nat e. Mappi ng. Attri butes. HonSeri al i zer. Defaul t. Seri al i ze(
System Ref | ecti on. Assenbl y. Get Execut i ngAssenbl y()););

/1 Now you can use this configuration to build your SessionFactory...

Note

As you can see here: NHibernate.Mapping.Attributes is not (really) intrusive. Setting attributes on your
objects doesn't force you to use them with NHibernate and doesn't break any constraint on your archi-
tecture. Attributes are purely informative (like documentation)!

27.3. Tips

1

In production, it is recommended to generate a XML mapping file from NHibernate.Mapping.Attributes
and use this file each time the SessionFactory need to be built. Usel HonSerial -
i zer. Defaul t. Serialize(typeof (XXX).Assenbly, "Domai nModel . hbm xm "); Itisdightly faster.

Use HonSerializer.Validate to enable/disable the validation of generated xml streams (against
NHibernate mapping schema); this is useful to quickly find errors (they are written in StringBuilder Hom
Serializer.Error). If the error is due to this library then see if it is a know issue and report it; you can
contribute a solution if you solve the problem :)

Your classes, fields and properties (members) can be private; just make sure that you have the permission
to access private members using reflection (Ref | ect i onPer ni ssi onFl ag. Menber Access).

Members of a mapped classes are also seek in its base classes (until we reach mapped base class). So you
can decorate some members of a (not mapped) base class and use it in its (mapped) sub class(es).

For a Name taking a Syst em Type, Set the type with Name="xxx" (aSstring) Or NaneType=t ypeof (xxx) ;
(add "Type" to "Name")

By default, .NET attributes don't keep the order of attributes; so you need to set it yourself when the order
matter (using the first parameter of each attribute); it is highly recommended to set it when you have more
than one attribute on the same member.

Aslong as there is no ambiguity, you can decorate a member with many unrelated attributes. A good ex-
ample is to put class-related attributes (like <di scri ni nat or >) on the identifier member. But don't forget
that the order matters (the <di scri mi nat or > must be after the <i d>). The order used comes from the order
of elements in the NHibernate mapping schema. Personally, | prefer using negative numbers for these at-
tributes (if they come beforel!).

NHibernate 5.1 216

NHibernate.Mapping.Attributes

You can add [Hi ber nat eMappi ng] 0N your classes to specify <hi ber nat e- mappi ng> attributes (used when
serializing the class in its stream). Y ou can also use Honseri al i zer. Hont properties (used when serializ-
ing an assembly or atype that is not decorated with [Hi ber nat eMappi ng]).

Instead of using a string for Di scri mi nat or Val ue (in [ass] and [Subcl ass]), you can use any object
you want. Example:

[Subcl ass(Di scri m nat or Val ueEnunfor mat ="d", Di scri m nat or Val ueCbj ect =Di scEnum Val 1)]

10.

11.

12.

13.

Here, the object is an Enum, and you can set the format you want (the default value is"g"). Note that you
must put it before! For otherstypes, It smply use the ToSt ri ng() method of the object.

Each stream generated by NHibernate.M apping.Attributes can contain a comment with the date of the gen-
eration; Y ou may enable/disable this by using the property Honeri al i zer. Wi t eDat eConmrent .

If you forget to provide a required xml attribute, it will obviously throw an exception while generating the
mapping.

The recommended and easiest way to map [Conponent] iSt0 use [Conponent Property] . Thefirst step is
to put [Conponent] on the component class and map its fields/properties. Note that you shouldn't set the
Nare in [Conponent] . Then, on each member in your classes, add [Component Property] . But you can't
override Access, Updat e or | nsert for each member.

There is a working example in NHibernate.Mapping.Attributes. Test (look for the class ConpAddr ess and
its usage in others classes).

Another way to map [Conponent] is to use the way this library works: If a mapped class contains a
mapped component, then this component will be include in the class. NHiber nate.Mapping.Attributes. Test
contains the classes Joi nedBaz and st uf f which both use the component Addr ess.

Basicdly, it isdone by adding

[Conponent (Nane = "MyConp")] private class SubConp : Conp {}

14.

15.

in each class. One of the advantages is that you can override Access, Updat e or | nsert for each member.
But you have to add the component subclass in each class (and it can not be inherited). Another advantage
isthat you canuse[Attributel dentifier].

Finally, whenever you think that it is easier to write the mapping in XML (this is often the case for
[Conponent]), YOU can use [Rawxm] .

About customization. HonSeri al i zer USeS Hbnw i t er to serialize each kind of attributes. Their methods
are virtual; so you can create a subclass and override any method you want (to change its default behavi-
or).

Use the property HonSeri al i zer. HomW i t er to change the writer used (you may set a subclass of Hom
Witer).

Example using some thistips: (0, 1 and 2 are position indexes)

/1 Don't put it after [ManyToOne] !!!

[NHi ber nat e. Mappi ng. Attri butes. 1d(0, TypeType=typeof (int))]

[NH ber nat e. Mappi ng. Attri butes. Generator (1, C ass="uuid. hex")]
[NHi ber nat e. Mappi ng. Attri but es. ManyToOne(2,

Cl assType=t ypeof (Foo), CQuterJoi n=CuterJoinStrategy. True)]
private Foo Entity;

Generates.

NHibernate 5.1 217

NHibernate.Mapping.Attributes

<id type="Int32">
<generator class="uuid. hex" />
</id>
<many-to-one nane="Entity" cl ass="Nanespaces. Foo, Sanpl eAssenbly" outer-join="true" />

27.4. Known issues and TODOs

First, read TODOs in the source code ;)
A Posi ti on property has been added to all attributes to order them. But there is still a problem:

When a parent element "p" has a child element "x" that is aso the child element of another child element "c" of
"p" (preceding "x") :D Illustration:

<p>
<c>
<x [>
</c>
<x [>
</ p>

In this case, when writing:

[Attributes. P(0)]
[Attributes. C(1)]
[Attributes. X(2)]
[Attributes. X(3)]

public MyType MyProperty;
X(3) will aways belong to C(1) ! (as X(2)).

It isthe case for <dynani c- conponent > and <nest ed- conposi t e- el enent >.

Another bad newsis that, currently, XML elements coming after this elements can not be included in them. Eg:
Thereis no way put a collection in <dynani c- conponent >. The reason is that the file nhi ber nat e- mappi ng. xsd
tells how elements are built and in which order, and NHibernate.M apping.Attributes use this order.

Anyway, the solution would beto add ai nt Par ent Node property to BaseAttribute so that you can create areal
graph...

For now, you can fallback on [Rawxmi] .

Actually, there is no other know issue nor planned modification. This library should be stable and complete; but
if you find a bug or think of an useful improvement, contact us!

On side note, it would be nice to write a better TestFixture than NHibernate.Mapping.Attributes.Test :D

27.5. Developer Notes

Any change to the schema (nhi ber nat e- mappi ng. xsd) implies:

1. Checking if there is any change to do in the Generator (like updating KnowEnums/ AllowMultipleValue/
IsRoot / 1sSystemType / 1sSystemEnum / CanContainltself)

NHibernate 5.1 218

NHibernate.Mapping.Attributes

2. Updating /src/ NHi ber nat e. Mappi ng. At t ri but es/ nhi ber nat e- mappi ng. xsd (copy/paste) and running
the Generator again (even if it wasn't modified)

3. Running the Test project and make sure that no exception isthrown. A class/property should be modified/ad-
ded in this project to be sure that any new breaking change will be caught (=> update the reference
hbm.xml files and/or the project NHi ber nat e. Mappi ng. Attri but es. csproj)

This implementation is based on NHibernate mapping schema; so thereis probably lot of "standard schema fea-
tures' that are not supported...

The version of NHibernate.Mapping.Attributes should be the version of the NHibernate schema used to gener-
ate it (=> the version of NHibernate library).

In the design of this project, performance is a (very) minor goal :) Easier implementation and maintenance are
far more important because you can (and should) avoid to use this library in production (Cf. the first tip in Sec-
tion 27.3, “Tips’).

NHibernate 5.1 219

	NHibernate - Relational Persistence for Idiomatic .NET
	Table of Contents
	Preface
	Chapter 1. Quick-start with IIS and Microsoft SQL Server
	1.1. Getting started with NHibernate
	1.2. First persistent class
	1.3. Mapping the cat
	1.4. Playing with cats
	1.5. Finally

	Chapter 2. Architecture
	2.1. Overview
	2.2. Instance states
	2.3. Contextual Sessions

	Chapter 3. ISessionFactory Configuration
	3.1. Programmatic Configuration
	3.2. Obtaining an ISessionFactory
	3.3. User provided ADO.NET connection
	3.4. NHibernate provided ADO.NET connection
	3.5. Optional configuration properties
	3.5.1. SQL Dialects
	3.5.2. Outer Join Fetching
	3.5.3. Custom ICacheProvider
	3.5.4. Query Language Substitution

	3.6. Logging
	3.7. Implementing an INamingStrategy
	3.8. XML Configuration File

	Chapter 4. Persistent Classes
	4.1. A simple POCO example
	4.1.1. Declare properties for persistent fields
	4.1.2. Implement a default constructor
	4.1.3. Provide an identifier property (optional)
	4.1.4. Prefer non-sealed classes and virtual methods (optional)

	4.2. Implementing inheritance
	4.3. Implementing Equals() and GetHashCode()
	4.4. Dynamic models
	4.5. Tuplizers
	4.6. Lifecycle Callbacks
	4.7. IValidatable callback

	Chapter 5. Basic O/R Mapping
	5.1. Mapping declaration
	5.1.1. XML Namespace
	5.1.2. hibernate-mapping
	5.1.3. class
	5.1.4. subselect
	5.1.5. id
	5.1.5.1. generator
	5.1.5.2. Hi/Lo Algorithm
	5.1.5.3. UUID Hex Algorithm
	5.1.5.4. UUID String Algorithm
	5.1.5.5. GUID Algorithms
	5.1.5.6. Identity columns and Sequences
	5.1.5.7. Assigned Identifiers
	5.1.5.8. Enhanced identifier generators
	5.1.5.8.1. Identifier generator optimization

	5.1.6. composite-id
	5.1.7. discriminator
	5.1.8. version (optional)
	5.1.9. timestamp (optional)
	5.1.10. property
	5.1.11. many-to-one
	5.1.12. one-to-one
	5.1.13. natural-id
	5.1.14. component, dynamic-component
	5.1.15. properties
	5.1.16. subclass
	5.1.17. joined-subclass
	5.1.18. union-subclass
	5.1.19. join
	5.1.20. map, set, list, bag
	5.1.21. import

	5.2. NHibernate Types
	5.2.1. Entities and values
	5.2.2. Basic value types
	5.2.3. Custom value types
	5.2.4. Any type mappings

	5.3. SQL quoted identifiers
	5.4. Modular mapping files
	5.5. Generated Properties
	5.6. Auxiliary Database Objects

	Chapter 6. Collection Mapping
	6.1. Persistent Collections
	6.2. Mapping a Collection
	6.3. Collections of Values and Many-To-Many Associations
	6.4. One-To-Many Associations
	6.5. Lazy Initialization
	6.6. Sorted Collections
	6.7. Using an <idbag>
	6.8. Bidirectional Associations
	6.9. Bidirectional associations with indexed collections
	6.10. Ternary Associations
	6.11. Heterogeneous Associations
	6.12. Collection examples

	Chapter 7. Component Mapping
	7.1. Dependent objects
	7.2. Collections of dependent objects
	7.3. Components as IDictionary indices
	7.4. Components as composite identifiers
	7.5. Dynamic components

	Chapter 8. Inheritance Mapping
	8.1. The Three Strategies
	8.1.1. Table per class hierarchy
	8.1.2. Table per subclass
	8.1.3. Table per subclass, using a discriminator
	8.1.4. Mixing table per class hierarchy with table per subclass
	8.1.5. Table per concrete class
	8.1.6. Table per concrete class, using implicit polymorphism
	8.1.7. Mixing implicit polymorphism with other inheritance mappings

	8.2. Limitations

	Chapter 9. Manipulating Persistent Data
	9.1. Creating a persistent object
	9.2. Loading an object
	9.3. Querying
	9.3.1. Scalar queries
	9.3.2. The IQuery interface
	9.3.3. Filtering collections
	9.3.4. Criteria queries
	9.3.5. Queries in native SQL

	9.4. Updating objects
	9.4.1. Updating in the same ISession
	9.4.2. Updating detached objects
	9.4.3. Reattaching detached objects

	9.5. Deleting persistent objects
	9.6. Flush
	9.7. Checking dirtiness
	9.8. Ending a Session
	9.8.1. Flushing the Session
	9.8.2. Committing the database transaction
	9.8.3. Closing the ISession

	9.9. Exception handling
	9.10. Lifecycles and object graphs
	9.11. Interceptors
	9.12. Metadata API

	Chapter 10. Read-only entities
	10.1. Making persistent entities read-only
	10.1.1. Entities of immutable classes
	10.1.2. Loading persistent entities as read-only
	10.1.3. Loading read-only entities from an HQL query/criteria
	10.1.4. Making a persistent entity read-only

	10.2. Read-only affect on property type
	10.2.1. Simple properties
	10.2.2. Unidirectional associations
	10.2.2.1. Unidirectional one-to-one and many-to-one
	10.2.2.2. Unidirectional one-to-many and many-to-many

	10.2.3. Bidirectional associations
	10.2.3.1. Bidirectional one-to-one
	10.2.3.2. Bidirectional one-to-many/many-to-one
	10.2.3.3. Bidirectional many-to-many

	Chapter 11. Transactions And Concurrency
	11.1. Configurations, Sessions and Factories
	11.2. Threads and connections
	11.3. Considering object identity
	11.4. Optimistic concurrency control
	11.4.1. Long session with automatic versioning
	11.4.2. Many sessions with automatic versioning
	11.4.3. Customizing automatic versioning
	11.4.4. Application version checking

	11.5. Session disconnection
	11.6. Pessimistic Locking
	11.7. Connection Release Modes
	11.8. Transaction scopes (System.Transactions)

	Chapter 12. Interceptors and events
	12.1. Interceptors
	12.2. Event system

	Chapter 13. Batch processing
	13.1. Batch inserts
	13.2. The StatelessSession interface
	13.3. DML-style operations

	Chapter 14. HQL: The Hibernate Query Language
	14.1. Case Sensitivity
	14.2. The from clause
	14.3. Associations and joins
	14.4. The select clause
	14.5. Aggregate functions
	14.6. Polymorphic queries
	14.7. The where clause
	14.8. Expressions
	14.9. The order by clause
	14.10. The group by clause
	14.11. Sub-queries
	14.12. HQL examples
	14.13. Tips & Tricks

	Chapter 15. Criteria Queries
	15.1. Creating an ICriteria instance
	15.2. Narrowing the result set
	15.3. Ordering the results
	15.4. Associations
	15.5. Join entities without association (Entity joins or ad hoc joins)
	15.6. Dynamic association fetching
	15.7. Example queries
	15.8. Projections, aggregation and grouping
	15.9. Detached queries and sub-queries

	Chapter 16. QueryOver Queries
	16.1. Structure of a Query
	16.2. Simple Expressions
	16.3. Additional Restrictions
	16.4. Associations
	16.5. Join entities without association (Entity joins or ad hoc joins)
	16.6. Aliases
	16.7. Projections
	16.8. Projection Functions
	16.9. Entities Projection
	16.10. Sub-queries

	Chapter 17. Linq Queries
	17.1. Structure of a Query
	17.2. Parameter types
	17.3. Supported methods and members
	17.3.1. Common methods
	17.3.2. DateTime and DateTimeOffset
	17.3.3. ICollection, non generic and generic
	17.3.4. IDictionary, non generic and generic
	17.3.5. Mathematical functions
	17.3.6. Nullables
	17.3.7. Strings

	17.4. Future results
	17.5. Fetching associations
	17.6. Modifying entities inside the database
	17.6.1. Inserting new entities
	17.6.2. Updating entities
	17.6.3. Deleting entities

	17.7. Query cache
	17.8. Extending the Linq to NHibernate provider
	17.8.1. Adding SQL functions
	17.8.2. Adding a custom generator

	Chapter 18. Native SQL
	18.1. Using an ISQLQuery
	18.1.1. Scalar queries
	18.1.2. Entity queries
	18.1.3. Handling associations and collections
	18.1.4. Returning multiple entities
	18.1.4.1. Alias and property references

	18.1.5. Returning non-managed entities
	18.1.6. Handling inheritance
	18.1.7. Parameters

	18.2. Named SQL queries
	18.2.1. Using return-property to explicitly specify column/alias names
	18.2.2. Using stored procedures for querying
	18.2.2.1. Rules/limitations for using stored procedures

	18.3. Custom SQL for create, update and delete
	18.4. Custom SQL for loading

	Chapter 19. Filtering data
	19.1. NHibernate filters

	Chapter 20. Improving performance
	20.1. Fetching strategies
	20.1.1. Working with lazy associations
	20.1.2. Tuning fetch strategies
	20.1.3. Single-ended association proxies
	20.1.4. Initializing collections and proxies
	20.1.5. Using batch fetching
	20.1.6. Using subselect fetching

	20.2. The Second Level Cache
	20.2.1. Cache mappings
	20.2.2. Strategy: read only
	20.2.3. Strategy: read/write
	20.2.4. Strategy: nonstrict read/write

	20.3. Managing the caches
	20.4. The Query Cache
	20.5. Understanding Collection performance
	20.5.1. Taxonomy
	20.5.2. Lists, maps, idbags and sets are the most efficient collections to update
	20.5.3. Bags and lists are the most efficient inverse collections
	20.5.4. One shot delete

	20.6. Batch updates
	20.7. Multi Query
	20.8. Multi Criteria

	Chapter 21. Toolset Guide
	21.1. Schema Generation
	21.1.1. Customizing the schema
	21.1.2. Running the tool

	Chapter 22. Example: Parent/Child
	22.1. A note about collections
	22.2. Bidirectional one-to-many
	22.3. Cascading lifecycle
	22.4. Using cascading Update()
	22.5. Conclusion

	Chapter 23. Example: Weblog Application
	23.1. Persistent Classes
	23.2. NHibernate Mappings
	23.3. NHibernate Code

	Chapter 24. Example: Various Mappings
	24.1. Employer/Employee
	24.2. Author/Work
	24.3. Customer/Order/Product

	Chapter 25. Best Practices
	Part I. NHibernateContrib Documentation
	Preface
	Chapter 26. NHibernate.Caches
	26.1. How to use a cache?
	26.2. Prevalence Cache Configuration
	26.3. SysCache Configuration
	26.4. SysCache2 Configuration
	26.4.1. Table-based Dependency
	26.4.2. Command-Based Dependencies
	26.4.3. Aggregate Dependencies
	26.4.4. Additional Settings

	26.5. EnyimMemcached Configuration
	26.6. RtMemoryCache Configuration
	26.7. CoreMemoryCache Configuration
	26.8. CoreDistributedCache Configuration
	26.8.1. Memcached distributed cache factory
	26.8.2. Redis distributed cache factory
	26.8.3. SQL Server distributed cache factory
	26.8.4. Memory distributed cache factory

	Chapter 27. NHibernate.Mapping.Attributes
	27.1. What's new?
	27.2. How to use it?
	27.3. Tips
	27.4. Known issues and TODOs
	27.5. Developer Notes

